RTINGS 10-Year Equivalent TV Longevity Update With Many Casualties

For the past two-and-half years Canadian consumer testing outfit RTINGS has been running an accelerated aging experiment across a large number of TVs available to a North-American audience. In their most recent update, we not only  find out about the latest casualties, but also the impending end of the experiment after 18,000 hours — as the TVs are currently failing left and right as they accelerate up the ascending ramp of the bathtub curve.

Some of these LEDs are dead, others are just wired in series. (Credit: RTINGS.com)
Some of these LEDs are dead, others are just wired in series.

The dumbest failure type has to be the TVs (such as the Sony X90J) where the failure of a single dead backlight LED causes the whole TV to stop working along with series-wired LED backlights where one dead LED takes out a whole strip or zone. Other failures include degrading lightguides much as with our last update coverage last year, which was when edge-lit TVs were keeling over due to overheating issues.

Detailed updates can be found on the constantly updating log for the experiment, such as on the failed quantum dot diffusor plate in a TCL QLED TV, as the quantum dots have degraded to the point of green being completely missing. Although some OLEDs are still among the ‘living’, they’re showing severe degradation – as pictured above – after what would be the equivalent of ten years of typical usage.

Once the experiment wraps up it will be fascinating to see who the survivors are, and what the chances are of still using that shiny new TV ten years from now.

Continue reading “RTINGS 10-Year Equivalent TV Longevity Update With Many Casualties”

The Impending CRT Display Revival Will Be Televised

Until the 2000s vacuum tubes practically ruled the roost. Even if they had surrendered practically fully to semiconductor technology like integrated circuits, there was no escaping them in everything from displays to video cameras. Until CMOS sensor technology became practical, proper video cameras used video camera tubes and well into the 2000s you’d generally scoff at those newfangled LC displays as they couldn’t capture the image quality of a decent CRT TV or monitor.

For a while it seemed that LCDs might indeed be just a flash in the pan, as it saw itself competing not just with old-school CRTs, but also its purported successors in the form of SED and FED in particular, while plasma TVs  made home cinema go nuts for a long while with sizes, fast response times and black levels worth their high sale prices.

We all know now that LCDs survived, along with the newcomer in OLED displays, but despite this CRTs do not feel like something we truly left behind. Along with a retro computing revival, there’s an increasing level of interest in old-school CRTs to the point where people are actively prowling for used CRTs and the discontent with LCDs and OLED is clear with people longing for futuristic technologies like MicroLED and QD displays to fix all that’s wrong with today’s displays.

Could the return of CRTs be nigh in some kind of format?

Continue reading “The Impending CRT Display Revival Will Be Televised”

Reviving A Scrapped Sound Blaster 2.0 ISA Soundcard

What do you do when you find a ISA Sound Blaster 2.0 card in a pile of scrap? Try to repair the damage on it to give it a second shot at life, of course. This is what [Adrian Black] did with one hapless victim, with the card in question being mostly in good condition minus an IC that had been rather rudely removed. The core Creative CT1336A and Yamaha YM3812 ICs were still in place, so the task was to figure out what IC was missing, find a replacement and install it.

The CT1350 is the final revision of the original 8-bit ISA Sound Blaster card, with a number of upgrades that makes this actually quite a desirable soundcard. The CT1350B revision featured here on a card from 1994 was the last to retain compatibility with the C/MS chips featured on the original SB card. After consulting with [Alex] from the Bits und Bolts YT channel, it was found that not only is the missing IC merely an Intel 8051-based Atmel MCU, but replacements are readily available. After [Alex] sent him a few replacements with two versions of the firmware preflashed, all [Adrian] had to do was install one.

Before installation, [Adrian] tested the card to see whether the expected remaining functionality like the basic OPL2 soundchip worked, which was the case. Installing the new MCU got somewhat hairy as multiple damaged pads and traces were discovered, probably because the old chip was violently removed. Along the way of figuring out how important these damaged pads are, a reverse-engineered schematic of the card was discovered, which was super helpful.

Some awkward soldering later, the card’s Sound Blaster functionality sprung back to life, after nudging the volume dial on the card up from zero. Clearly the missing MCU was the only major issue with the card, along with the missing IO bracket, for which a replacement was printed after the video was recorded.

Continue reading “Reviving A Scrapped Sound Blaster 2.0 ISA Soundcard”

Meta’s Ray-Ban Display Glasses And The New Glassholes

It’s becoming somewhat of a running gag that any device or object will be made ‘smart’ these days, whether it’s a phone, TV, refrigerator, home thermostat, headphones or glasses. This generally means somehow cramming a computer, display, camera and other components into the unsuspecting device, with the overarching goal of somehow making it more useful to the user and not impacting its basic functionality.

Although smart phones and smart TVs have been readily embraced, smart glasses have always been a bit of a tough sell. Part of the problem here is of course that most people do not generally wear glasses, between people whose vision does not require correction and those who wear e.g. contact lenses. This means that the market for smart glasses isn’t immediately obvious. Does it target people who wear glasses anyway, people who wear sunglasses a lot, or will this basically move a smart phone’s functionality to your face?

Smart glasses also raise many privacy concerns, as their cameras and microphones may be recording at any given time, which can be unnerving to people. When Google launched their Google Glass smart glasses, this led to the coining of the term ‘glasshole‘ for people who refuse to follow perceived proper smart glasses etiquette.

Continue reading “Meta’s Ray-Ban Display Glasses And The New Glassholes”

When Low SRAM Keeps The DOOM Off Your Vape

The PIXO Aspire is a roughly $35 USD vape that can almost play DOOM, with [Aaron Christophel] finding that the only thing that realistically stops it from doing so is that the Cortex-M4-based Puya PY32F403XC MCU only has 64 kB of SRAM. CPU-wise it would be more than capable, with a roomy 16 MB of external SPI Flash and a 323×173 pixel LC touch screen display covering the other needs. It even has a vibration motor to give you some force feedback. Interestingly, this vape has a Bluetooth Low-Energy chip built-in, but this does not seem to be used by the original Aspire firmware.

What [Aaron] did to still get some DOOM vapors on the device was to implement a screenshare firmware, allowing a PC to use the device as a secondary display via its USB interface. This way you can use the regular PC mouse and keyboard inputs to play DOOM, while squinting at the small screen.

Although not as completely overpowered as a recent Anker charging station that [Aaron] played DOOM on, we fully expect vapes in a few years to be perfectly usable for some casual gaming, with this potentially even becoming an original manufacturer’s function, if it isn’t already.

Continue reading “When Low SRAM Keeps The DOOM Off Your Vape”

Venus Climate Orbiter Akatsuki’s Mission Has Ended

Japan’s Venus Climate Orbiter Akatsuki was launched on May 21, 2010, and started its active mission in 2015 after an initial orbital insertion failure. Since that time, Akatsuki has continuously observed Venus from orbit until issues began to crop up in 2024 when contact was lost in April of that year due to attitude control issues. Japan’s space agency, JAXA, has now announced that the mission has officially ended on September 18, 2025, after a period of trying to coax the spacecraft back into some level of functionality again.

The Akatsuki spacecraft in 2010 before its launch. (Credit: JAXA)
The Akatsuki spacecraft in 2010 before its launch. (Credit: JAXA)

The Akatsuki spacecraft had six instruments, consisting of cameras covering the visible spectrum, ultraviolet and infrared spectra, as well as an oscillator for radio occultation experiments.

All primary mission goals were successfully completed in April of 2018, but engineers determined Akatsuki was capable of lasting at least another few years. This puts it well past its original design lifespan, and has provided us with much more scientific data than we could have hoped for.

Unfortunately, the shutdown of Akatsuki represents the end of the last active Venus mission, with much uncertainty surrounding any potential upcoming mission to Earth’s near-twin planet. The next potential mission is the Venus Life Finder, as an atmospheric mission penciled in for a 2026 launch. It would take at least until 2028 for a potential orbiter mission to launch, so for the foreseeable future Venus will be left alone, without its artificial moon that has kept it company for a decade.

Fnirsi IPS3608: A Bench Power Supply With Serious Flaws

Fnirsi is one of those brands that seem to pop up more and more often, usually for portable oscilloscopes and kin. Their IPS3608 bench power supply is a bit of a departure from that, offering a mains-powered PSU that can deliver up to 36 VDC and 8 A in a fairly compact, metal enclosure. Recently [Joftec] purchased one of these units in order to review it and ended up finding a few worrying flaws in the process.

One of the claims made on the product page is that it is ‘much more intelligent than traditional power supplies’, which is quite something to start off with. The visual impression of this PSU is that it’s somewhat compromised already, with no earth point on the front next to the positive and negative banana plug points, along with a tilting screen that has trouble staying put. The USB-C and -A ports on the front support USB-PD 3.0 and a range of fast charge protocols

The ‘intelligence’ claim seems to come mostly from the rather extensive user interface, including a graphing function. Where things begin to fall apart is when the unit locks up during load testing presumably due to an overheating event. After hooking up an oscilloscope, the ripple at 1 VDC was determined to be about 200 mV peak-to-peak at 91 kHz. Ripple increased at higher voltages, belying the ’10 mV ultra-low ripple’ claim.

A quick teardown revealed the cause for the most egregious flaw of the unit struggling to maintain even 144 Watt output: a very undersized heatsink on the SMPS board. The retention issues with the tilting issue seemed to be due to a design choice that prevents the screen from rotating without breaking plastic. While this latter issue could be fixed, the buggy firmware and high ripple on the DC output make this €124 ‘285 Watt’ into a hard pass.

Continue reading “Fnirsi IPS3608: A Bench Power Supply With Serious Flaws”