Hackaday Prize Entry: Elderly Autonomous Fall Detection

For his Hackaday Prize entry, [having11] is building a simple and cheap fall detection notification button that can be worn by senior citizens, young kids or others affected by medical conditions. [having11] did some fact-finding, and it appears that falls are one of the leading causes of injury for seniors, according to data available from the Centres for Disease Control and Prevention (CDC).

This device will sense a fall and send a text message or email to a recipient caregiver, loved one, or friend. The notification can also be manually triggered using a pushbutton. There’s a 5-second delay before it actually sends the alert, allowing a false trigger to be canceled. On receiving the alert, the recipient can decide how to proceed and if the situation requires a call to emergency services.

The device uses an ESP8266, a MPU6050 MEMS gyro-accelerometer combo, and MyDevices Cayenne IoT service. The Cayenne IoT service is free for Makers and non-commercial use at the moment. The only other components needed are a few discretes and a small LiPo battery, keeping the cost of the device under $10. The whole assembly is housed in a 3D printed enclosure. The next steps would probably be to make it more compact and design a housing that can be worn as an arm or chest band or on a waist belt. An important requirement of such monitoring devices is being able to notify when/before it is unable to fulfill its primary requirements. Towards that end, maybe adding a low battery and low WiFi signal strength indicators would be nice.

If you have more suggestions on making this better, chime in with your comments below.

Continue reading “Hackaday Prize Entry: Elderly Autonomous Fall Detection”

Open Source Glucose Monitoring on the Front Lines of Innovation

Cloud-based CGM

[John] is the parent of a diabetic child, and his efforts to expand the communication options for his son’s CGM (continuous glucose monitor) have grown into a larger movement: #wearenotwaiting.

After receiving a new monitor—a Dexcom G4—[John] set about decoding its communication protocols. The first steps were relatively simple, using a laptop to snag the data from the CGM and storing it on a Google doc which he could access as the day went along. The next step involved connecting the monitor and a cellphone for around-the-clock data gathering. [John] managed to develop an Android app to accomplish just that, and shortly after people began to take notice. Both [Howard Look], the CEO of Tidepool, and [Lane Desborough], engineer and father of a child with diabetes, have thrown in their support, leading to further developments such as Nightscout, an open source solution for storing CGM data in the cloud.

This project is a victory not only for those with diabetes, but also for the open source community. [John] admits his initial hesitation for developing for the medical device platform: litigation from a corporation could cause devastation for him and his family despite his intentions to merely improve his son’s and others’ quality of life. Those fears have mostly subsided, however, because the project now belongs to both no one and to everyone. It’s community-owned through an open source repository. Check out the overview of [John’s] work for more pictures and links to different parts of the #wearenotwaiting community.

The Berkeley Tricorder is now Open Source!

[Reza Naima] has just released the designs for his Berkeley Tricorder for the public to use. He’s been designing it since 2007 as his thesis work for his PhD, and since he’s done now (Congrats!), he decided to let it grow by making it open source!

We covered it almost 7 years ago now when it was in its first prototype form, and it has come a long way since then. The latest version features an electromyogram (EMG), an electrocardiograph (ECG), a bioimpedance spectrometer, a pulse oximeter, an accelerometer, and all the data is recorded to a micro SD card or sent via bluetooth to a tablet or smart phone for data visualization.

He’s released it in hopes that other researchers can utilize the hardware in their own research, hopefully springing up a community of people interested in non-invasive health monitoring. With any luck, the development of the Berkeley Tricorder will continue, and maybe some day, can truly live up to its name!

Unfortunately there’s no new video showing off the latest iteration, but we’ve attached the original video after the break, which gives a good narrative on the device by [Reza] himself.

Continue reading “The Berkeley Tricorder is now Open Source!”

Pervasive Health Monitor (Got Granny?)


[Reza] sent in a project that he’s obviously put loads of work into. His Pervasive Health Monitor is basically a bluetooth enabled health telemetry recorder/transmitter. I think it’s an absolutely excellent piece of work. He’s offered to post more technical details if we have enough interest – It’s got my vote.

The video (after the break) starts off a bit dry, but trust me – it’s worth checking out. The monitor sports a TI MCU, bluetooth chipset, flash socket, multiple signal amps and onboard audio amplification. The PocketPC is showing the real time data stream being delivered via bluetooth.

Continue reading “Pervasive Health Monitor (Got Granny?)”