Teardown: VeriFone MX 925CTLS Payment Terminal

Regular Hackaday readers may recall that a little less than a year ago, I had the opportunity to explore a shuttered Toys “R” Us before the new owners gutted the building. Despite playing host to the customary fixture liquidation sale that takes place during the last death throes of such an establishment, this particular location was notable because of how much stuff was left behind. It was now the responsibility of the new owners to deal with all the detritus of a failed retail giant, from the security camera DVRs and point of sale systems to the boxes of employee medical records tucked away in a back office.

Clipping from New York Post. September 24th, 2018.

The resulting article and accompanying YouTube video were quite popular, and the revelation that employee information including copies of social security cards and driver’s licenses were left behind even secured Hackaday and yours truly a mention in the New York Post. As a result of the media attention, it was revealed that the management teams of several other stores were similarly derelict in their duty to properly dispose of Toys “R” Us equipment and documents.

Ironically, I too have been somewhat derelict in my duty to the good readers of Hackaday. I liberated several carloads worth of equipment from Geoffrey’s fallen castle with every intention of doing a series of teardowns on them, but it’s been nine months and I’ve got nothing to show for it. You could have a baby in that amount of time. Which, incidentally, I did. Perhaps that accounts for the reshuffling of priorities, but I don’t want to make excuses. You deserve better than that.

So without further ado, I present the first piece of hardware from my Toys “R” Us expedition: the VeriFone MX 925CTLS. This is a fairly modern payment terminal with all the bells and whistles you’d expect, such as support for NFC and EMV chip cards. There’s a good chance that you’ve seen one of these, or at least something very similar, while checking out at a retail chain. So if you’ve ever wondered what’s inside that machine that was swallowing up your debit card, let’s find out.

Continue reading “Teardown: VeriFone MX 925CTLS Payment Terminal”

Lighting Tech Dives Into The Guts Of Laser Galvanometers

There’s something magical about a laser light show. Watching that intense beam of light flit back and forth to make shapes and patterns, some of them even animated, is pretty neat. It leaves those of us with a technical bent wondering just exactly how the beam is manipulated that fast.

Wonder no more as [Zenodilodon], a working concert laser tech with a deep junk bin, dives into the innards of closed-loop galvanometers, which lie at the heart of laser light shows. Galvos are closely related to moving-coil analog meters, which use the magnetic field of a coil to deflect a needle against spring force to measure current. Laser galvos, on the other hand, are optimized to move a lightweight mirror back and forth, by tiny amounts but very rapidly, to achieve the deflection needed to trace out shapes.

As [Zeno] explains in his teardown of some galvos that have seen better days, this means using a very low-mass permanent magnet armature surrounded by coils. The armature is connected to the mirror on one end, and a sensor on the other to provide positional feedback. We found this part fascinating; it hadn’t occurred to us that laser galvos would benefit from closed-loop control. And the fact that a tiny wiggling vane can modulate light from an IR LED enough to generate a control signal is pretty cool too.

The video below may be a bit long, but it’s an interesting glimpse into the day-to-day life of a lighting tech. It puts a little perspective on some of the laser projection projects we’ve seen, like this giant Asteroids game.

Continue reading “Lighting Tech Dives Into The Guts Of Laser Galvanometers”

Tearing Down A $25K 8K Video Camera

Most people buy expensive cameras and use them rather than taking them apart, but Linus Tech Tips has a different approach. They decided that they would rather take the camera apart, with a view to converting it to water cooling. Why? Well, that’s perhaps like asking why climb Mount Everest: because it is there. The practicality (or desirability) of water-cooling an 8K camera aside, the teardown is rather interesting from an an engineering point of view. The RED HELIUM 8K costs about $25K, and most of us don’t often get a look inside equipment like this.

Continue reading “Tearing Down A $25K 8K Video Camera”

Teardown The Things You Love

This two-decade old blinkenlights project (YouTube link, and also below the break) would look at home among current $1 soldering kits except for a few key differences. Firstly, it has the teardown artist’s name on the back and comes from an era when DIY circuit boards really meant doing things yourself including the artwork, etching, and drilling. The battery holders are our favorite feature. Instead of being a part on a BOM, this board has some wire loops soldered in place and relies on a pair of venerable LR44 alkaline cells instead of the CR2032s we all enjoy today.

Given the age of the project, [Big Clive] is not revisiting his old masterpiece just for nostalgia, he is having to retrace his old circuit and do a teardown on his own work because the schematic was lost to time. We think there is value to revisiting old work like an archaeologist would approach an ancient necklace. Some of us used to comment our code religiously for fear that we would forget what went through our learning minds and need to be reminded of that rigor.

If you want another battery holder that doesn’t need a part number, check out one that leverages the semi-flexible nature of thin PCBs or fake the batteries altogether. Continue reading “Teardown The Things You Love”

Repairdown: Disklavier DKC500RW Control Unit

If you’ve been kind enough to accompany me on these regular hardware explorations, you’ve likely recognized a trend with regards to the gadgets that go under the knife. Generally speaking, the devices I take apart for your viewing pleasure come to us from the clearance rack of a big box retailer, the thrift store, or the always generous “AS-IS” section on eBay. There’s something of a cost-benefit analysis performed each time I pick up a piece of gear for dissection, and it probably won’t surprise you to find that the least expensive doggy in the window is usually the one that secures its fifteen minutes of Internet fame.

DKC500RW installed on right side.

But this month I present to you, Good Reader, something a bit different. This time I’m not taking something apart just for the simple joy of seeing PCB laid bare. I’ve been given the task of repairing an expensive piece of antiquated oddball equipment because, quite frankly, nobody else wanted to do it. If we happen to find ourselves learning about its inner workings in the process, that’s just the cost of doing business with a Hackaday writer.

The situation as explained to me is that in the late 1990’s, my brother’s employer purchased a Yamaha Mark II XG “Baby Grand” piano for somewhere in the neighborhood of $20,000. This particular model was selected for its ability to play MIDI files from 3.5 inch floppy disks, complete with the rather ghostly effect of the keys moving by themselves. The idea was that you could set this piano up in your lobby with a floppy full of Barry Manilow’s greatest hits, and your establishment would instantly be dripping with automated class.

Unfortunately, about a month or so back, the piano’s Disklavier DKC500RW control unit stopped reading disks. The piano itself still worked, but now required a human to do the playing. Calls were made, but as you might expect, most repair centers politely declined around the time they heard the word “floppy” and anyone who stayed on the line quoted a price that simply wasn’t economical.

Before they resorted to hiring a pianist, perhaps a rare example of a human taking a robot’s job, my brother asked if he could remove the control unit and see if I could make any sense of it. So with that, let’s dig into this vintage piece of musical equipment and see what a five figure price tag got you at the turn of the millennium.

Continue reading “Repairdown: Disklavier DKC500RW Control Unit”

Vintage Fairchild IC Proves Tough To Decap

You’d think that something called “white fuming nitric acid” would be more than corrosive enough to dissolve just about anything. Heck, it’s rocket fuel – OK, rocket fuel oxidizer – and even so it still it wasn’t enough to pop the top on this vintage Fairchild μL914 integrated circuit, at least not without special measures.

As [John McMaster], part of the team that analyzed the classic dual 2-input NOR gate RTL chip from the 1960s, explains it, decapping modern chips is a straightforward if noxious process. Generally a divot is milled into the epoxy, providing both a reservoir for the WFNA and a roughened surface for it to attack. But the Fairchild chip, chosen for dissection for the Maker Faire Bay Area last week specifically because the features on the die are enormous by modern standards, was housed in an eight-lead TO-99 case with epoxy that proved nigh invulnerable to WFNA. [John] tried every chemical and mechanical trick in the book, going so far as to ablate epoxy with a Nd:YAG laser. He eventually got the die exposed, only to discover that it was covered with silicone rather than the silicon dioxide passivation layer of modern chips. Silicone can be tough stuff to remove, and [John] resorted to using lighter fluid as a solvent and a brush with a single bristle to clean up the die.

We applaud the effort that this took, which only proves that decapping is more art than science sometimes. And the results were fabulous; as Hackaday editor-in-chief [Mike Szczys] notes, the decapping led to his first real “a-ha moment” about how chips really work.

Continue reading “Vintage Fairchild IC Proves Tough To Decap”

Ripping Up A Rothult

NFC locks are reaching a tipping point where the technology is so inexpensive that it makes sense to use it in projects where it would have been impractical months ago. Not that practicality has any place among these pages. IKEA carries a cabinet lock for $20USD and does not need any programming but who has a jewelry box or desk drawer that could not benefit from a little extra security? Only a bit though, we’re not talking about a deadbolt here as this teardown shows.

Rothult has all the stuff you would expect to find in an NFC scanner with a moving part. We find a microcontroller, RFID decoder, supporting passives, metal shaft, and a geartrain. The most exciting part is the controller which is an STM32L051K8 processor by STMicroelectronics and second to that is the AS3911 RFID reader from AMS. Datasheets for both have links in the teardown. Riping up a Rothult in the lab, we find an 25R3911B running the RFID, and we have a link to that PDF datasheet. Both controllers speak SPI.

There are a couple of things to notice about this lock. The antenna is a flat PCB-mounted with standard header pins, so there is nothing stopping us from connecting coax and making a remote antenna. The limit switches are distinct so a few dabs of solder could turn this into an NFC controlled motor driver. Some of us will rest easy when our coworkers stop kidnapping our nice pens.

Rothult first came to our attention in a Hackaday Links where a commenter was kind enough to tip us off to this teardown. Thanks, Pio! If this whets your appetite for NFC, we have more in store.