Google Is Building A New OS

Windows, macOS, and Linux are the three major desktop OSs in today’s world. However, there could soon be a new contender, with Google stepping up to the plate (via The Verge).

You’ve probably used Google’s operating systems before. Android holds a dominant market share in the smartphone space, and ChromeOS is readily available on a large range of notebooks intended for lightweight tasks. Going forward, it appears Google aims to leverage its experience with these products and merge them into something new under the working title of “Aluminium OS.”

The news comes to us via a job listing, which sought a Senior Product Manager to work on a “new Aluminium, Android-based, operating system.” The hint is in the name—with speculation that the -ium part of Aluminium indicates its relationship to Chromium, the open-source version of Chrome. The listing also indicated that the new OS would have “Artificial Intelligence (AI) at the core.” At this stage, it appears Google will target everything from cheaper entry level hardware to mid-market and premium machines.

It’s early days yet, and there’s no word as to when Google might speak more officiously on the topic of its new operating system. It’s a big move from one of the largest tech companies out there. Even still, it will be a tall order for Google to knock off the stalwart offerings from Microsoft and Apple in any meaningful way. Meanwhile, if you’ve got secret knowledge of the project and they forget to make you sign an NDA, don’t hesitate to reach out!

Simple Tricks To Make Your Python Code Faster

Python has become one of the most popular programming languages out there, particularly for beginners and those new to the hacker/maker world. Unfortunately, while it’s easy to  get something up and running in Python, it’s performance compared to other languages is generally lacking. Often, when starting out, we’re just happy to have our code run successfully. Eventually, though, performance always becomes a priority. When that happens for you, you might like to check out the nifty tips from [Evgenia Verbina] on how to make your Python code faster.

Many of the tricks are simple common sense. For example, it’s useful to avoid creating duplicates of large objects in memory, so altering an object instead of copying it can save a lot of processing time. Another easy win is using the Python math module instead of using the exponent (**) operator since math calls some C code that runs super fast. Others may be unfamiliar to new coders—like the benefits of using sets instead of lists for faster lookups, particularly when it comes to working with larger datasets. These sorts of efficiency gains might be merely useful, or they might be a critical part of making sure your project is actually practical and fit for purpose.

It’s worth looking over the whole list, even if you’re an intermediate coder. You might find some easy wins that drastically improve your code for minimal effort. We’ve explored similar tricks for speeding up code on embedded platforms like Arduino, too. If you’ve got your own nifty Python speed hacks, don’t hesitate to notify the tipsline!

RavynOS: Open Source MacOS With Same BSD Pedigree

That macOS (formerly OS X) has BSD roots is a well-known fact, with its predecessor NeXTSTEP and its XNU kernel derived from 4.3BSD. Subsequent releases of OS X/macOS then proceeded to happily copy more bits from 4.4BSD, FreeBSD and other BSDs.

In that respect the thing that makes macOS unique compared to other BSDs is its user interface, which is what the open source ravynOS seeks to address. By taking FreeBSD as its core, and crafting a macOS-like UI on top, it intends to provide the Mac UI experience without locking the user into the Apple ecosystem.

Although FreeBSD already has the ability to use the same desktop environments as Linux, there are quite a few people who prefer the Apple UX. As noted in the project FAQ, one of the goals is also to become compatible with macOS applications, while retaining support for FreeBSD applications and Linux via the FreeBSD binary compatibility layer.

If this sounds good to you, then it should be noted that ravynOS is still in pre-release, with the recently released “Hyperpop Hyena” 0.6.1 available for download and your perusal. System requirements include UEFI boot, 4+ GB of RAM, x86_x64 CPU and either Intel or AMD graphics. Hardware driver support for the most part is that of current FreeBSD 14.x, which is generally pretty decent on x86 platforms, but your mileage may vary. For testing systems and VMs have a look at the supported device list, and developers are welcome to check out the GitHub page for the source.

Considering our own recent coverage of using FreeBSD as a desktop system, ravynOS provides an interesting counterpoint to simply copying over the desktop experience of Linux, and instead cozying up to its cousin macOS. If this also means being able to run all macOS games and applications, it could really propel FreeBSD into the desktop space from an unexpected corner.

How One Uncaught Rust Exception Took Out Cloudflare

On November 18 of 2025 a large part of the Internet suddenly cried out and went silent, as Cloudflare’s infrastructure suffered the software equivalent of a cardiac arrest. After much panicked debugging and troubleshooting, engineers were able to coax things back to life again, setting the stage for the subsequent investigation. The results of said investigation show how a mangled input file caused an exception to be thrown in the Rust-based FL2 proxy which went uncaught, throwing up an HTTP 5xx error and thus for the proxy to stop proxying customer traffic. Customers who were on the old FL proxy did not see this error.

The input file in question was the features file that is generated dynamically depending on the customer’s settings related to e.g. bot traffic. A change here resulted in said feature file to contain duplicate rows, increasing the number of typical features from about 60 to over 200, which is a problem since the proxy pre-allocates memory to contain this feature data.

Continue reading “How One Uncaught Rust Exception Took Out Cloudflare”

Writing Type-Safe Generics In C

The fun part about a programming language like C is that although the language doesn’t directly support many features including object-oriented programming and generics, there’s nothing that’s keeping you from implementing said features in C. This extends to something like type-safe generics in C, as [Raph] demonstrates in a blog post.

After running through the various ways that generics are also being implemented using methods including basic preprocessor macros and void pointers, the demonstrated method is introduced. While not necessarily a new one, the advantage with this method is that it is type-safe. Much like C++ templates, these generics are evaluated at compile time, with the preprocessor handling both the type checking and filling in of the right template snippets.

While somewhat verbose, it can be condensed into a single header file, doesn’t rely on the void type or pointers and can be deduplicated by the linker, preventing bloat. If generics is what you are looking for in your C project, this might be a conceivable solution.

Screenshot of X running on Gloire

There’s No Rust On This Ironclad Kernel

Rust is the new hotness in programming languages because of how solid its memory protections are. Race conditions and memory leaks are hardly new issues however, and as greybeards are wont to point out, they were kind of a solved problem already: we have Ada. So if you want a memory-protected kernel but aren’t interested in the new kids’ rusty code, you might be interested in the Ironclad OS kernel, written entirely in Ada.

OK, not entirely in classic Ada– they claim to use SPARK, too, but since SPARK and Ada converged syntax-wise over a decade ago, we’re just going to call it Ada. The SPARK toolchain means they can get this kernel “formally-verified” however, which is a big selling point. If you’re not into CS, that just means the compiler can confirm the code is going to do what we want under all possible conditions — which is a nice thing to be able to say about the heart of your operating system, I think we can all agree. It’s a nice thing to be able to say about any code, which is one reason why you might want to be programming in Ada.

Continue reading “There’s No Rust On This Ironclad Kernel”

FLOSS Weekly Episode 854: The Big Daddy Core

This week Jonathan and Ben chat with Jason Shepherd about Ocre and Atym.io! That’s the lightweight WebAssembly VM that lets you run the same containers on Linux and a host of embedded platforms, on top of the Zephyr embedded OS. What was the spark that led to this project’s creation, what does Atym.io bring to the equation, and what are people actually doing with it? Watch to find out!

Continue reading “FLOSS Weekly Episode 854: The Big Daddy Core”