Making A Violin Mold With A 3D Printer

IMG104

Some people see 3D printers as expensive and slow devices for replicating bracelets, whistles, and Yoda heads. Until the world transitions to a plastic octopus-based economy, those of us with 3D printers will have to find something useful for these tools. Bayesian Empiritheurgy out of Halifax, Nova Scotia wanted to do something useful with their 3D printer for the large-scale, distributed hackerspace competition, The Deconstruction. They ended up using their printer to make molds for a paper mache violin, and ended up being fairly successful at it.

The basic idea behind their paper mache violin was to create a plastic mold for exactly half a violin body. This block was covered in newspaper drenched in wheat paste. Once the paste was dry, the violin half was pulled off the mold and another half was created. These were stitched and glued together, resulting in a violin body.

The bridge, tailpiece, tuners, and fingerboard were 3D pprinted and held together with epoxy. The epoxy flexed a lot, so every time a string was tuned it threw out the tuning of the other three strings. In the video after the break, you can check out the paper mache and plastic violin being played. It’s not much for the eyes or ears, but everyone had fun, and the team completed the proof of concept for a fiberglass or carbon fiber violin we’d suggest they try next.

Continue reading “Making A Violin Mold With A 3D Printer”

Giving 3D Printed Parts A Shiny Smooth Finish

No matter how good a 3D printer gets, you’re always going to have visible print layers. Even with very high-quality prints with sub-0.1mm layer height, getting a shiny and smooth finish of injection molded plastic is nearly impossible. That is, of course, until you do some post-print finishing. [Neil Underwood] and [Austin Wilson] figured out a really easy way to smooth out even the jankiest prints using parts you probably already have lying around.

The technique relies on the fact that ABS plastic and acetone don’t get along together very well. We’ve seen acetone used to smooth out 3D printed objects before – either by dunking the parts in an acetone bath or brushing the solvent on – but these processes had mixed results. [Neil] and [Austin] had the idea of using acetone vapor, created in a glass jar placed on top of a heated build plate,

The process is pretty simple. Get a large glass jar, put it on a heated build plate, add a tablespoon of acetone, and crank the heat up to 110C. Acetone vapor will form in the jar and react with any printed part smoothing out those layers. The pic above shows from right to left a 3D printed squirrel at 0.35 mm layer height, 0.1 mm layer height – the gold standard of high-end repraps – and another print with 0.35 layer height that was run through a vapor bath for a few minutes. Amazing quality there, and cheap and easy enough for any 3D printer setup.

You can check out the tutorial video after the break along with a video showing exactly how dangerous this is (it’s not, unless you do something very, very dumb).

Continue reading “Giving 3D Printed Parts A Shiny Smooth Finish”

SCARA Arm Finally Prints Plastic Parts

SCARA

Here’s a neat alternative to the usual gantry setup you see on 3D printers. [Quentin] designed and build a SCARA arm 3D printer that just saw its first print.

We caught wind of [Quentin]’s SCARA arm a few weeks ago when it was still just a few plastic parts and a glimmer of ambition in its creator’s eye. Most of the parts are 3D printed, including the blue arms for the x and y axes that are driven by stepper motors. The z axis is controlled by two lead screws, and judging by the height of [Quentin]’s machine, he has a pretty big printable volume – at least as large as some of the delta bot 3D printers we’ve seen.

So far [Quentin] has printed a handful of calibration cubes and a wheel with a fairly impressive print resolution. You can check out a video of the SCARA arm printer after the break.

Continue reading “SCARA Arm Finally Prints Plastic Parts”

Adventures In 3d Printing: Our First Week With The LulzBot AO-100

Lulzbot-3D-printer-RT

Recently, we acquired a LulzBot AO-100. It was given to us, free of charge.  After having it for about a week, I’ve figured out enough that I feel I can finally share my thoughts, impressions, and experiences.  I will be completely honest about the machine. It was given to us, which is insanely awesome, but hey, I have to share the real information with the readers.

When we first started looking for a printer, we decided we didn’t want to build one from scratch. While that might seem initially to be the opposite of Hack a Day, there is a reason. I simply can’t build every tool I use from scratch.  I have projects in mind that could benefit from a 3d printer, and I want to work on those.  This meant that I was looking for a pre-assembled unit. Many people asked for an article on getting a reprap going, so we started to consider reprap based kits as well.

When LulzBot contacted us, I was initially skeptical. I mean, the name is lulzBot. Is this an internet troll? Is this somehow connected to Lulzsec, the hacking group? Did they seriously name their printer LulzBot? Well, as it turns out, they are legitimate. Not only that, we’ve seen them before, they are also AlephObjects, who sent in the video of the wall o’ printers working. Why did they name it LulzBot? The answer was basically, for the lulz. It is worth noting that [Jeff] has been a strong proponent for free software for a long time and that Lulzbot is built from the ground up to be completely open and shareable. You can go to the website right now and download the list of parts as well as all source code and configurations.

As you read further, please remember that the model they sent me was not their newest. They don’t even sell this model any more. Technically speaking, it is roughly 2 generations behind.

Continue reading “Adventures In 3d Printing: Our First Week With The LulzBot AO-100”

Midwest RepRap Festival

midwest-reprap-meetup

Midwesterner’s should take note — here’s an event that’s happening somewhere other than New York or California! We jest, of course there are great events in the Midwestern states every year, like the Kanasas City or Detroit Maker Faires. This event puts focus on 3D printing. The Midwest RepRap Festival will be held in Elkhart, Indian March 15-17, 2013. Despite the name, the event is meant to encompass all things involved with any brand, make, or variety of 3D printing.

The owners of a local business called The Royal Phoenix have opened their doors for the weekend. Organizers have arranged for [Josef Prusa] and [Johnny R] to speak. There will also be build events (one session will show the build process of the MendelMax 2.0) so feel free to bring your own equipment for help with construction or getting it dialed in.

There is no registration fee, or tickets. But it would be best if you did fill out the questionnaire so they have some semblance of how many people might be coming.

Ceramic Hot-end Mount Seeks To Improve Extrude Performace

ceramic-hot-end-mount

Take a gander at the part of this extruder head which looks like a chess pawn. It’s the mounting bracket for the hot end and it’s made out of ceramic. [Ed] came up with the idea to use ceramic to mount the hot end when trying to improve the design while keeping it rather simple and easy to assemble. The concept uses the thermal properties of the ceramic to insulate well enough to operate the extruder at higher temperatures without causing other problems.

Where does one get a custom ceramic part anyway? Turns out you can get low volume runs from China much like PCBs. The minimum order was ten units, which was still a leap of faith since he had no way of testing the design in advance. The first run with the new part went quite well, but only for the first layer and then the filament jammed. He’s still not sure why, but overcame the issue by lining the inside of the ceramic with a PTFE tube. This means he now has to use a smaller filament to fit through it. But the quality of the prints he’s getting with 1.75mm stock and the ceramic head are superb.

It may even be possible to print this ceramic part some day. We remember seeing another extruder that can deposit ceramic clay.

21st Century Light Bulbs Using 3D Printer And Chemistry Equipment

lab-equipment-light-bulbs

[Andreas Hölldorfer] brings his light fixtures into this century by using a couple of modern technologies. The fixtures combine LED modules, 3D printed pieces, and laboratory glassware to give his room a unique look.

The glass enclosure is something he’s had on hand for quite some time but they never actually got used. There is an opening at one end which is meant to receive a stopper. He modeled one including holes for the wires and printed the piece with a 3D printer. Also fabricated in the same way is a bracket that is used for mounting the fixture to the wall. The blossom of components inside the glass are each made up of five LED modules. There’s no word on what he’s using for a power supply or how he managed the cable runs, but he did post an image of two of the fixtures installed in his living room.