Hackaday Links: December 22, 2019

It’s hard to believe it, but the Raspberry Pi has been on the market for only seven years now. The single-board computer has become so entrenched in the hobby electronics scene that it’s hard to imagine life without it, or what we did before it came along. And with the recent announcement that the 30 millionth Raspberry Pi was recently manufactured, now we have some clarity on the scale of its success. Just roll that number around in your head for a bit – that’s one Pi for every nine or so people in the USA. Some of the other facts and figures in the linked article boggle the mind too, like Eben Upton figured they’d only ever sell about 10,000 units, or that the factory in Wales where most Pis are made can assemble 15,000 units a day.

Speaking of manufacturing, have you ever considered what goes into getting a small-scale manufactured product ready for shipping? The good folks over at Gigatron know all about the joys of kitting, and have put together an interesting un-unboxing video for their flagship TTL-only retro computer. It’s a nice riff on the unboxing videos that are somehow popular on YouTube these days, and shows just how much effort they put into getting a Gigatron out the door. All told, it takes about an hour to ship each unit, and the care put into the process is evident. We especially like the part where all the chips are placed into antistatic foam in the same orientation they’ll be on the completed board. Nice touch.

Last time we checked in on the Lulzbot saga, the open source 3D printer manufacturer had been saved from complete liquidation by a company named FAME 3D. Now we’re getting the first solid details about where things go from here. Not only will thirteen of the remaining Lulzbot employees be staying on, but FAME 3D plans to hire 50 new employees to get operations back up as quickly as possible. The catch? The “F” in FAME 3D stands for Fargo, North Dakota, where Fargo Additive Manufacturing Equipment 3D is based. So Lulzbot will be moving north from Loveland, Colorado in the coming months.

For the last few years, adventure travelers making the pilgrimage to Shenzhen to scour the electronics markets have stuffed a copy of Andrew “Bunnie” Huang’s The Essential Guide to Electronics in Shenzhen into their soon-to-be-overflowing backpacks. The book is a goldmine of insider information, stuffed with maps and translation tables critical for navigating a different culture with no local language skills. Bunnie’s book has only been available in dead-tree format and now that all but the last few copies have been sold, he decided to make a web version available for free. We’d have to think a tablet or phone would be a bit harder to use in the heat of negotiation than the nice spiral-bound design of the print copy, but the fact that the insider information will now be widely available probably makes this a net positive.

And finally, if you’ve ever nearly been run over by an EV or hybrid silently backing out of a parking space, you’ll no doubt appreciate attempts to legislate some sort of audible presence to these vehicles. But what exactly should an electric vehicle be made to sound like? Volkswagen has begun to address that question, and while you can certainly read through the fluff in their press release, all you really need to do is listen to the sample. We’ve got to say that they pretty much nailed what a car of the future should sound like. Although they might have missed a real opportunity here.

The Past, Present, And Uncertain Future Of LulzBot

Considering that it’s only existed for around a decade, the commercial desktop 3D printing market has seen an exceptional amount of turnover. But then, who could resist investing in an industry that just might change the world? It certainly didn’t hurt that the MakerBot Cupcake, arguably the first “mass market” desktop 3D printer, was released the same month that Kickstarter went live. We’ve long since lost count of the failed 3D printer companies that have popped up in the intervening years. This is an industry with only a handful of remaining veterans.

One of the few that have been with us since those heady early days is LulzBot, founded in 2011 by parent company Aleph Objects. Their fully open source workhorses are renowned for their robust design and reliability, though their high prices have largely kept them off the individual hacker’s bench. LulzBot was never interested in the race to the bottom that gave birth to the current generation of sub-$200 printers. Their hardware was always positioned as a competitor to the likes of Ultimaker and MakerBot, products where quality and support are paramount above all else.

NASA’s modified LulzBot

While LulzBot printers never made an impact on the entry-level market, there are institutions willing to purchase a highly dependable American-made 3D printer regardless of cost. The United States Marines used LulzBot printers to produce replacement Humvee door handles in the field, and some of the modifications that were necessary to meet their stringent requirements eventually resulted in updates to the consumer version of the printer. NASA used a highly modified LulzBot TAZ 4 to print PEI at temperatures as high as 500°C, producing parts far stronger than anything that had previously been made on a desktop 3D printer.

Yet despite such auspicious customers, LulzBot has fallen on difficult times. Consumers have made it abundantly clear they aren’t willing to pay more than $1,000 for a desktop printer, and competition above that price point is particularly fierce. Last month we started hearing rumblings in the Tip Line that the vast majority of LulzBot staff were slated to be let go, and we soon got confirmation and hard numbers from local media. Of the company’s 113 employees, only 22 would remain onboard to maintain day-to-day operations. Production on their flagship models would continue, albeit at a reduced pace, and all existing warranties would be honored. But the reduction in staff and limited cash flow meant that the development of future products, such as the LulzBot Bio tissue printer, would be put on hold.

LulzBot wasn’t quite dead, but it was hard to see this as anything but a step on the road to insolvency. A number of insiders we spoke to said they had heard a buyout was expected, and today we can report that the sale of Aleph Objects to Fargo Additive Manufacturing Equipment 3D (FAME 3D) is official. Production of the current LulzBot models is expected to continue, and some of the 91 laid off employees are likely to be hired back, but continuing Aleph Objects CEO Grant Flaharty says the details are still being finalized.

This new financial backing, provided by a venture capitalist, is certainly good news. But it would be naive to think this is the end of LulzBot’s troubles. The market has spoken, and unless the company is willing to introduce a vastly cheaper version of their printer to entice the entry-level customer as Prusa Research has recently done, it’s unclear how an infusion of cash will do anything but delay the inevitable.

For what it’s worth, we hope LulzBot finds some way to thrive. The ideal of building fully open source printers is something near and dear to the heart of Hackaday, but after the loss of PrintrBot, we’re all keenly aware of how difficult it is for small American companies to compete in the modern 3D printing market.

Hackaday’s Open Hardware Summit Experience

Last week was the Open Hardware Summit in Denver Colorado. This yearly gathering brings together the people and businesses that hold Open Hardware as an ideal to encourage, grow, and live by. There was a night-before party, the summit itself which is a day full of talks, and this year a tour of a couple very familiar open hardware companies in the area.

I thought this year’s conference was quite delightful and am happy to share with you some of the highlights.

Continue reading “Hackaday’s Open Hardware Summit Experience”

Hackaday Links: October 8, 2017

On the top of the popcorn pile for this weekend is an ambiguous tweet from Adafruit that was offered without comment or commentary. [Lady Ada] is holding some sort of fancy incorporation papers for Radio Shack. The smart money is that Adafruit just bought these at the Radio Shack auction a month or so ago. The speculation is that Adafruit just bought Radio Shack, or at least the trademarks and other legal ephemera. Either one is cool, but holy crap please bring back the retro 80s branding.

A Rubik’s Cube is a fantastic mechanical puzzle, and if you’ve never taken one apart, oh boy are you in for a treat. Here’s an RGB LED Rubick’s Cube with not enough detail as to how each square is getting powered. Here’s an open challenge for anyone: build an RGB LED Rubick’s Cube, and Open Source the design.

Last weekend, the front fell off the engine of an Air France A380 flying over Greenland. As with all aircraft incidents, someone has to find the missing bits. It only took a week to find a mangled cowling on an ice sheet. This is incredibly impressive; if you want a comparison to another accident, it took three months to find the fan disk for UA 232 in an Iowa cornfield.

Poorly thought out Kickstarters don’t grab our attention like they used to, but this is an exception. The Aire is a mashup of one of those voice-activated home assistants (Alexa, whatever the Google one is named…) and a drone. The drone half of the build is marginally interesting as a ducted fan coaxial thingy, and building your own home assistant isn’t that hard with the right mics and a Raspberry Pi. The idea is actually solid — manufacturing is another story, though. It appears no one thought about how annoying it would be to have a helicopter following them around their house, or if the mics would actually be able to hear anyone over beating props. Here’s the kicker: this project was successfully funded. People want to buy this. A fool and his or her money…

Processing is cool, although we’re old skool and still reppin’ Max/MSP. It looks like the first annual Processing Community Day is coming up soon. The Processing Community Day will be at the MIT Media Lab on October 21st, with talks from the headliners of the Processing community.

Maker Faire NYC was two weekends ago, the TCT show in Birmingham was last week, and Open Hardware Summit was in Denver this weekend. Poor [Prusa] was at all of them, racking up the miles. He did, however, get to ride [James from XRobots.co.uk]’s electric longboard. There’s some great videos from [James] right here and here.

Speaking of Open Hardware Summit, there was a field trip to Sparkfun and Lulzbot this Friday. The highlight? The biggest botfarm in the states, and probably the second largest in the world. That’s 155 printers, all in their own enclosures, in a room that’s kept at 80° F. They’re printing ABS. Control of the printers is through a BeagleBone running Octoprint. These ‘Bones and Octoprint only control one printer each, and there is no software layer ‘above’ the Octoprint instances for managing multiple printers simultaneously. That probably means the software to manage a botfarm doesn’t exist. There have been attempts, though, but nothing in production. A glove thrown down?

MRRF 17: Lulzbot And IC3D Release Line Of Open Source Filament

Today at the Midwest RepRap Festival, Lulzbot and IC3D announced the creation of an Open Source filament.

While the RepRap project is the best example we have for what can be done with Open Source hardware, the stuff that makes 3D printers work – filament, motors, and to some extent the electronics – are tied up in trade secrets and proprietary processes. As you would expect from most industrial processes, there is an art and a science to making filament and now these secrets will be revealed.

IC3D Printers is a manufacturer of filament based in Ohio. This weekend at MRRF, [Michael Cao], founder and CEO of IC3D Printers announced they would be releasing all the information, data, suppliers, and techniques that go into producing their rolls of filament.

According to [Michael Cao], there won’t be much change for anyone who is already using IC3D filament – the materials and techniques used to produce this filament will remain the same. In the coming months, all of this data will be published and IC3D is working on an Open Source Hardware Certification for their filament.

This partnership between IC3D and Lulzbot is due in no small part to Lulzbot’s dedication to Open Source Hardware. This dedication is almost excessive, but until now there has been no option for Open Source filament. Now it exists, and the value of Open Source hardware is again apparent.

Hackaday Links: February 26, 2017

The MeArm Pi is a fantastic little robot kit that was the first place winner of the Enlightened Pi contest here on Hackaday. It’s crushing the Shitty Robots subreddit, and compared to the old MeArm kit, it’s much, much simpler to assemble. Ask me how I know. Now the MeArm Pi is a Kickstarter. This tiny robot arm is programmable in everything from Scratch to Perl. It’s highly recommended for children ages 8 to those wanting to recreate the opening scene of Pee Wee’s Big Adventure.

Almost a year ago, Lulzbot unveiled their latest 3D printer at the Midwest RepRap Festival. The Taz 6 is a great printer, but it’s a bit of a departure from their previous designs. The biggest change was the ‘brain box’, the controller box that encases the power supply, stepper drivers, and other associated electronics. Last year, Lulzbot said they would be selling this brain box by itself. It’s out now, ready for integration into your own self-built Taz, or a 3D printer of your own design.

Speaking of the Midwest RepRap Festival, it’s only a month away. It’s scheduled for March 25-26th at the Elkhart County 4-H Fairgrounds in Goshen, Indiana. Why the middle of nowhere? It ensures only the cool kids make it. For one weekend a year, Goshen, Indiana turns into the nexus of all things 3D printing. Don’t ask questions, just come. It’s free, although it would be cool if you kicked a few bucks over to the organizers.

[Clickspring] — the guy who built a fantastic clock in his home shop – is working on his second project. It’s an Antikythera Mechanism, and the latest episode is about building a gigantic gear. This is a unique approach to building an Antikythera Mechanism. [Clickspring] is still using modern tools, but he’s figuring out how this machine was built with tools available 2000 years ago.

Ogopogo, defeated by the Travelling Hacker Box.
Ogopogo, defeated by the Travelling Hacker Box.

Ogopogo. Champ is a picture of a log and Nessie is a toy submarine with a head made out of plastic wood. Ogopogo is a plesiosaur. Are you going to tell me a log – or at best a beaver – can kick the ass of a plesiosaur? Ogo. Pogo. Plesiosaur. The Travelling Hacker Box has conquered Ogopogo.

The ESP32 is quickly becoming the coolest microcontroller platform out there. You know what that means – Kickstarters! The FluoWiFi is Arduino-derived dev board featuring the ESP32 for WiFi, Bluetooth, and all the cool wireless goodies. This board also features an ATMega644p — basically the little sister to the ATMega1284p – for all your standard microcontroller Arduino stuff. It’s £25 for a board, which makes it pretty inexpensive for what you’re getting.

Ask Hackaday: Is Owning A 3D Printer Worth It?

3D printers are the single best example of what Open Hardware can be. They’re useful for prototyping, building jigs for other tools, and Lulzbot has proven desktop 3D printers can be used in industrial production. We endorse 3D printing as a viable tool as a matter of course around here, but that doesn’t mean we think every house should have a 3D printer.

Back when Bre was on Colbert and manufacturing was the next thing to be ‘disrupted’, the value proposition of 3D printing was this: everyone would want a 3D printer at home because you could print plastic trinkets. Look, a low-poly Bulbasaur. I made a T-rex skull. The front page of /r/3Dprinting. Needless to say, the average consumer doesn’t need to spend hundreds of dollars to make their own plastic baubles when WalMart and Target exist.

The value proposition of a 3D printer is an open question, but now there is some evidence a 3D printer provides a return on its investment. In a paper published this week, [Joshua Pearce] and an undergraduate at Michigan Tech found a 3D printer pays for itself within six months and can see an almost 1,000% return on investment within five years. Read on as I investigate this dubious claim.

Continue reading “Ask Hackaday: Is Owning A 3D Printer Worth It?”