Putting More Tech Into More Hands: The Robin Hoods of Hackaday Prize

Many different projects started with the same thought: “That’s really expensive… I wonder if I could build my own for less.” Success is rewarded with satisfaction on top of the money saved, but true hacker heroes share their work so that others can build their own as well. We are happy to recognize such generosity with the Hackaday Prize [Robinhood] achievement.

Achievements are a new addition to our Hackaday Prize, running in parallel with our existing judging and rewards process. Achievements are a way for us to shower recognition and fame upon creators who demonstrate what we appreciate from our community.

Fortunately there is no requirement to steal from the rich to unlock our [Robinhood] achievement, it’s enough to give away fruits of price-reduction labor. And unlocking an achievement does not affect a project’s standings in the challenges, so some of these creators will still collect coveted awards. The list of projects that have unlocked the [Robinhood] achievement will continue to grow as the Hackaday Prize progresses, check back regularly to see the latest additions!

In the meantime, let’s look at a few notable examples that have already made the list:

Continue reading “Putting More Tech Into More Hands: The Robin Hoods of Hackaday Prize”

Tiny Vacuum Chamber Arm to Help with Homemade Semiconductors

[Nixie] wants to make semiconductors at home, and that requires some unusual tools. Chief among them is a vacuum chamber to perform thin-film deposition, and true to the hacker credo his is homemade, and will soon be equipped with a tiny manipulator arm with magnetically coupled mechanical controls.

If [Nixie]’s setup looks familiar, it might be because we featured his plasma experiments a few days ago. He was a little cagey then about his goal, but he’s come clean with his desire to make his own FETs (a project that is his 2018 Hackaday Prize entry). Doing so will require not only creating stable plasmas, but also the ability to move substrates around inside the vacuum chamber. Taking inspiration from the slender and maneuverable instruments surgeons use for laparoscopic procedures, [Nixie] is working on a miniature arm that will work inside his vacuum chamber. The video below is a 3D-printed proof-of-concept model in action, and shows how the arm’s segments will be controlled by cables. What’s really interesting is that the control cables will not penetrate the vacuum chamber — they’ll be moved right through the glass wall using magnets.

We’re keen to see chips from [Nixie]’s home fab lab, but it looks like there will be a lot of cool hacks between here and there. We’ll be watching closely. Continue reading “Tiny Vacuum Chamber Arm to Help with Homemade Semiconductors”

Evezor Robotic Arm Engraves 400 Coasters

When you’re running a Kickstarter for a robotic arm, you had better be ready to prove how repeatable and accurate it is. [Andrew] has done just that by laser engraving 400 wooden coasters with Evezor, his SCARA arm that runs on a Raspberry Pi computer with stepper control handled by a Smoothieboard.

Evezor is quite an amazing project: a general purpose arm which can do everything from routing circuit boards to welding given the right end-effectors. If this sounds familiar, that’s because [Andrew] gave a talk about Evezor at Hackaday’s Unconference in Chicago,

One of the rewards for the Evezor Kickstarter is a simple wooden coaster. [Anderw] cut each of the wooden squares out using a table saw. He then made stacks and set to programming Evezor. The 400 coasters were each picked up and dropped into a fixture. Evezor then used a small diode laser to engrave its own logo along with an individual number. The engraved coasters were then stacked in a neat output pile.

After the programming and setup were complete, [Andrew] hit go and left the building. He did keep an eye on Evezor though. A baby monitor captured the action in low resolution. Two DSLR cameras also snapped photos of each coaster being engraved. The resulting time-lapse video can be found after the break.

Continue reading “Evezor Robotic Arm Engraves 400 Coasters”

Ancient Robot Creates Modern Art

They say that there’s more to a Jackson Pollock painting than randomly scattering paint on a canvas, and the auction value of his work seems to verify that claim. If you want to create some more conventional artwork, however, but are missing the artistic muse that inspired Pollock, maybe you can put your creative energies to work building a robot that will create the art for you.

[Dane Kouttron] was able to get his hands on an old SCARA robotic arm, and was recently inspired to create a paintbrush-weilding robot with it for the 2nd Annual Robot Art competition. Getting one of these ancient (circa 1983) robots working again is no easy task though. [Dane] used LinuxCNC to help reverse engineer the robot’s controls and had to build a lot of supporting hardware to get the extremely heavy robot to work properly. The entire process took around two months, and everything from color selection to paint refill to the actual painting itself is completely automated.

Be sure to check out the video after the break to see the robot in action. The writeup goes into great detail about the robot, and includes everything from reverse engineering the encoders to auto-cleaning a paintbrush. If you don’t have a SCARA robot arm in your parts drawer, though, there are lots of other options to explore for robot-created artwork.

Continue reading “Ancient Robot Creates Modern Art”

Creo Arm Might be the SCARA You’re Looking For

A SCARA (Selective Compliance Assembly Robot Arm) is a type of articulated robot arm first developed in the early ’80s for use in industrial assembly and production applications. All robotics designs have their strengths and their weaknesses, and the SCARA layout was designed to be rigid in the Z axis, while allowing for flexibility in the X and Y axes. This design lends itself well to tasks where quick and flexible horizontal movement is needed, but vertical strength and rigidity is also necessary.

This is in contrast to other designs, such as fully articulated arms (which need to rotate to reach into tight spots) and cartesian overhead-gantry types (like in a CNC mill), which require a lot of rigidity in every axis. SCARA robots are particularly useful for pick-and-place tasks, as well as a wide range of fabrication jobs that aren’t subjected to the stress of side-loading, like plasma cutting or welding. Unfortunately, industrial-quality SCARA arms aren’t exactly cheap or readily available to the hobbyist; but, that might just be changing soon with the Creo Arm.
Continue reading “Creo Arm Might be the SCARA You’re Looking For”

Industrial Automation in Action: Steam Controller Assembly

Right up front, we’ll cop to the inevitable “not a hack” comments on this one. This video of the Steam Controller assembly plant is just two minutes of pure robotics porn, plain and simple.

From injection molding of the case parts through assembly, testing and final palletizing of packaged controllers for the trip to distributors, Valve’s video is amazingly detailed and very well made. We’d wager that the crane shots and the shots following product down conveyors were done with a drone. A grin was had with the Aperture Labs logo on the SCARA arms in the assembly and testing work cell, and that inexplicable puff of “steam” from the ceiling behind the pallet in the final shot was a nice touch too. We also enjoyed the all-too-brief time-lapse segment at around 00:16 that shows the empty space in Buffalo Grove, Illinois being fitted out.

This may seem like a frivolous video, but think about it: if you’re a hardware hacker, isn’t this where you want to see your idea end up? Think of it as inspiration to get your widget into production. You’ll want to get there in stages, of course, so make sure you check out [Zach Fredin]’s 2015 Hackaday Superconference talk on pilot-scale production.

Continue reading “Industrial Automation in Action: Steam Controller Assembly”

Hackaday Links: August 30, 2015

A month ago, we ran a post about [Jim]’s rare and strange transparent microchips. He’s back at it again, this time taking a look at the inner workings of MOSFETs

The Unallocated Space hackerspace is moving, and they’re looking for a few donations to get the ball rolling.

Yes, it’s a Kickstarter for a 3D printer, but the LumiPocket is interesting, even if only on the basis of the engineering choices. It’s a UV laser resin printer, and they’re using a SCARA arm to move the laser around. They’re also doing a top-down resin tank; it requires more resin, but it seems to work well enough.

Around DC or northern Virginia? We’re going to be there on September 11th through the 13th. We’re holding a Hackaday Prize Worldwide meetup at Nova Labs in Reston, Virgina. Sign up now! Learn KiCAD with [Anool]! Meet [Sudo Bob]! It’ll be a blast.

Not around DC or NOVA? This Wednesday we’ll be hosting another chat on .io.

The GEnx is one of the most beautiful and advanced engines in the world, and that means [Harcoreta] oven on the RC groups forums has made one of the most beautiful electric ducted fans in the world. On the outside, it looks like a GEnx, including reverse thrust capabilities, but inside it’s pure electronics: a brushless motor rotates a 100mm, 18-blade fan. He’s hoping to mount it on a Bixler (!). We can’t wait for the video of the maiden.