Icicle Patterns With Custom Gantry

[Cranktown City] uses a number of custom-built linear rails used as gantries for various tools in the shop. The first is on a plasma cutter, which is precise but difficult to set up or repair. Another is for mounting a camera, and while it is extremely durable, it’s not the most precise tool in the shop. Hoping to bridge the gap between these two, he’s building another gantry with a custom bearing system, and to test it he’ll be using it to create patterns in icicles hanging from an eave at his shop.

While this isn’t the final destination for this gantry, it is an excellent test of it, having to perform well for a long period of time in an extremely cold environment. The bearing system consists of a piece of square steel tubing turned 45° inside another larger square steel tube and held in place with two sets of three bearings with V-shaped notches. To drive the gantry he is using a motor with a belt drive, and for this test a piece of drip irrigation is mounted to it which lets out a predetermined amount of water on top of the roof to create numerous icicles beneath with various programmed lengths.

After a few test runs the gantry system can create some icicles, although they don’t have the exact sine wave shape that [Cranktown City] programmed into it. They are varying lengths though, and with no more cold days in the forecast he’s called it a success. This isn’t the final destination for this robotic linear gantry, though, but it did help him work out some of the kinks with it beforehand. For other sources of inspiration, take a look at this linear rail system also used for driving various robotic tooling.

Continue reading “Icicle Patterns With Custom Gantry”

Skid Steer Robot Chassis Takes A Beating

[Engineering After Hours] wanted a highly maneuverable robot chassis with a tight turning radius. Skid steering seemed to be the perfect solution, but the available commercial options didn’t take his fancy. Thus, a custom build was the answer – with impressive results.

The build packs two large RC motors, one for each side, with each driving two wheels through a belt drive. This reduces the electronics required to the bare minimum for skid steering. It’s all assembled within a plasma-cut metal chassis which is more than tough enough to take some hard knocks.

One of the primary goals on the build was to eliminate the risk of vibrations and shock damaging the motors and gearboxes. Many off-the-shelf designs couple the wheels directly to gearbox output shafts, potentially damaging the expensive components over time. In this design, a separate bearing assembly is used to take the load from the wheels instead.

It’s a great example of how an engineering-first approach can build a sturdy ‘bot with a minimum of fuss. Outfitted with some fat off-road tyres the performance is impressive, with the ‘bot having no trouble tearing it up in mud, snow, and water.

We’ve seen other great builds from [Engineering After Hours] before, like the active aero RC build. Video after the break.

Continue reading “Skid Steer Robot Chassis Takes A Beating”