Wine In Beverage Cans Had A Rotten Egg Problem, Until Now

Aluminum beverage cans are used for all kinds of drinks, but when it comes to wine there are some glitches. Chief among them is the fact that canned wine occasionally smelled like rotten eggs. Thankfully, researchers have figured out why that happens, and how to stop it. How was this determined? As the image above hints at, lots and lots of samples and testing.

What causes this, and why don’t other beverages have this problem? Testing revealed that the single most important factor was the presence of molecular sulfur dioxide (SO2), a compound commonly used in winemaking as an antioxidant and antimicrobial.

It turns out that the thin plastic lining on the inside of beverage cans doesn’t fully stop molecular SO2 from reacting with the surrounding aluminum, creating hydrogen sulfide (H2S) in the process. H2S has a very noticeable rotten egg smell, even in low concentrations.

Researchers discovered that if a canned beverage contained more than 0.5 ppm of molecular SO2, a noticeable increase in hydrogen sulfide was likely to be present within four to eight months. The problem is that since most wines aim for around 0.5 ppm of SO2, the average can on wine sitting on a shelf will have a problem sooner rather than later. The more SO2 in the wine (reds tend to contain less, whites more), the worse the problem.

Simply increasing the thickness of the plastic liner is an imperfect solution since it increases manufacturing costs as well as waste. So, researchers believe the right move is to use a more durable liner formulation combined with a lower SO2 concentration than winemakers are usually comfortable with. Unlike bottles, cans can be hermetically sealed which should offset the increased oxidation risk of using a lower concentration of SO2. The result should be wine as a canned beverage, with a shelf life of at least 8 months.

The research is published here and gives a great look at just how one approaches this kind of scientific problem, as well as highlighting just how interesting the humble aluminum beverage can really is.

A Fully Automatic Electric Can Crusher

Those of us who recycle our empty drink cans know the annoying storage problem these containers present. For an object with very little metal, a can takes up a huge amount of space, and should you possess a greater than average thirst you can soon end up with a lot of space taken up with stacks of cans. The solution of course is to crush them, and while there are many simple solutions involving hinged blocks of wood or lever systems, this is 2019! We have Machines to that kind of thing for us! [All Things Electro-Mechanical] thinks so anyway, for he has created an automatic can crusher that is a joy to behold.

At its heart is a 120V AC powered linear actuator, which crushes a can held in a welded steel guide. As the can is crushed it drops into a waiting bin, and when the actuator retracts a fresh can drops down from a hopper. Control is handled by a Raspberry Pi, and there are end sensors for the actuator and an optical sensor for the can hopper. As it stands, once the last can is in place the machine stops due to the optical sensor registering no can in the hopper, but no doubt a software change could cause it to execute a single crush cycle after the last can it detects.

This machine would be an ideal candidate for a simple industrial automation system, but however it is controlled it would save its owner from an embarrassing test of strength. Take a look, we’ve posted the two videos showing it in action below the break.

Thanks [Baldpower] for the tip.

Continue reading “A Fully Automatic Electric Can Crusher”