Wine In Beverage Cans Had A Rotten Egg Problem, Until Now

Aluminum beverage cans are used for all kinds of drinks, but when it comes to wine there are some glitches. Chief among them is the fact that canned wine occasionally smelled like rotten eggs. Thankfully, researchers have figured out why that happens, and how to stop it. How was this determined? As the image above hints at, lots and lots of samples and testing.

What causes this, and why don’t other beverages have this problem? Testing revealed that the single most important factor was the presence of molecular sulfur dioxide (SO2), a compound commonly used in winemaking as an antioxidant and antimicrobial.

It turns out that the thin plastic lining on the inside of beverage cans doesn’t fully stop molecular SO2 from reacting with the surrounding aluminum, creating hydrogen sulfide (H2S) in the process. H2S has a very noticeable rotten egg smell, even in low concentrations.

Researchers discovered that if a canned beverage contained more than 0.5 ppm of molecular SO2, a noticeable increase in hydrogen sulfide was likely to be present within four to eight months. The problem is that since most wines aim for around 0.5 ppm of SO2, the average can on wine sitting on a shelf will have a problem sooner rather than later. The more SO2 in the wine (reds tend to contain less, whites more), the worse the problem.

Simply increasing the thickness of the plastic liner is an imperfect solution since it increases manufacturing costs as well as waste. So, researchers believe the right move is to use a more durable liner formulation combined with a lower SO2 concentration than winemakers are usually comfortable with. Unlike bottles, cans can be hermetically sealed which should offset the increased oxidation risk of using a lower concentration of SO2. The result should be wine as a canned beverage, with a shelf life of at least 8 months.

The research is published here and gives a great look at just how one approaches this kind of scientific problem, as well as highlighting just how interesting the humble aluminum beverage can really is.

A Shrine For All The 555 Lovers

For many of our readers, the classic 555 timer holds a special place in their heart, and cursed be the fool who dares to use an Arduino in its place. For the seriously devoted ones, or those who simply like a novelty decorative item, [acerlaguinto7] built just the right thing: a giant, actually functional, cardboard 555 timer IC.

Taking all the measurements of the original IC, [acerlaguinto7] scaled it up by factor 22 and started cutting out pieces of cardboard — also considering the orientation notch — and added the markings to emulate TI’s NE555P. Next he took a bunch of aluminum cans apart and shaped them into the pins, again staying as close as possible to the original. To top it all off, he put an actual NE555 inside the giant counterpart, and hooked it up to the soda can pins, turning it into a fully operational, oversized timer IC.

Obviously, giant conductive pins like that scream for some dead bug blinky light that even the shakiest of hands could manage to solder, and [acerlaguinto7] certainly delivers, as you can see in the video after the break. One nifty way we could see this taken further would be integrating this breadboard implementation as replacement for the 555 inside — or then just connect it to the giant Raspberry Pi.

Continue reading “A Shrine For All The 555 Lovers”

Soda Can Art

A can of soda costs about half a dollar, and once you’re done with the sugary syrup, most cans end up in the trash headed for recycling. Some folks re-use them for other purposes, but we’re guessing no one up-cycles them quite like artist [Noah Deledda] does. He turns them into pieces of Soda Can art that sell for anywhere between $2000 to $3000 a pop.

Don’t be fooled by that smashing hit in the GIF. It’s just some trick photography that [Noah] did to impress people. If you looked at the end product without the back story first, you’d think the cans were manipulated in to contorted shapes using some kind of mechanical assistance, at the very least, or probably a purpose-built machine.

But [Noah Deledda] does it with bare hands. This is the bare-metal version of Origami. While on a road trip many years ago, he was bereft of electronic devices to keep him busy. Playing with an empty can of soda, he started denting and squeezing the thin metal in to an abstract shape. That’s when the artist in him realized that he was playing with an exciting new medium. After making some abstract art pieces out of empty cans of a vermillion bovine energy drink, he figured it would look much more awesome if he could remove all the paint from the cans and give them a smooth, polished, natural finish. He made a little machine that rotates the cans so he can strip the paint and bring the cans to a high polish. The technique is simple but requires a lot of patience, practice, time and skill, not to mention that it will cause a lot of pain in the thumb.

If you’ve ever been to Japan and drank a can of Kirin Hyoketsu, you’d notice the un-opened can is smooth, but immediately changes to a pattern of indented diamonds once you open it. That design was created by Kyoro Miura, well-known for the Miura Fold that lets you fold and unfold large sheets of paper in one smooth movement. Like that discarded map in the glove box of the car you’re riding in, while playing with an empty can of soda.

If you want to hone some ambidextrous skills, this would be a good way to do it while on your next road, plane or train trip. Check out the two videos embedded below. In the second one, you can see snapshots of the design process.

Thanks, [Keith O], for this tip.

Continue reading “Soda Can Art”

Making A Gun Without A 3D Printer

Around four years ago the world was up in arms over the first gun to be 3D printed. The hype was largely due to the fact that most people don’t understand how easy it is to build a gun without a 3D printer. To that end, you don’t even need access to metal stock, as [FarmCraft101] shows us with this gun made out of melted aluminum cans.

The build starts off by melting over 200 cans down into metal ingots, and then constructing a mold for the gun’s lower. This is the part that is legally regulated (at least in the US), and all other parts of a gun can be purchased without any special considerations. Once the aluminum is poured into the mold, the rough receiver heads over to the machine shop for finishing.

This build is fascinating, both from a machinist’s and blacksmith’s point-of-view and also as a reality check for how easy it is to build a firearm from scratch provided the correct tools are available. Of course, we don’t need to worry about the world being taken over by hoards of angry machinists wielding unlicensed firearms. There’s a lot of time and effort that goes into these builds and even then they won’t all be of the highest quality. Even the first 3D printed guns only fired a handful of times before becoming unusable, so it seems like any homemade firearm, regardless of manufacturing method, has substantial drawbacks.

Thanks to [Rey] for the tip!

Continue reading “Making A Gun Without A 3D Printer”