Bridging The Gap Between Dissimilar Road Types With Foam

When you think of driving up or down an embankment, do you ever wonder how much foam you’re currently driving on? Probably not, because it hardly seems like a suitable building material. But as explained by [Practical Engineering] in the video below the break, using an expanded material to backfill an embankment isn’t as dense as it sounds.

In many different disciplines, mating dissimilar materials can be difficult: Stretchy to Firm; Soft to Hard; Light to Heavy. It’s that last one, Light to Heavy, that is a difficult match for roadways. A bridge may be set down in bedrock, but the embankments approaching it won’t be. The result? Over time, embankment settles lower than the bridge does, causing distress for cars and motorists alike. What’s the solution?

To mitigate this, engineers have started to employ less dirty materials to build their otherwise soil based embankments. Lightweight concrete is one solution, but another is Expanded Polystyrene (EPS) foam. Its light weight makes installation simple in anything but a strong breeze, and it’s inexpensive and durable. When used properly, it can last many years and provide a stable embankment that won’t settle as far or as quickly as one made of dirt. Because as it turns out, dirt is heavy. Who knew?

Aside from roadways and bespoke aircraft, EPS foam has also been used for making home insulation. What’s your favorite use for EPS foam? Let us know in the comments below.

Continue reading “Bridging The Gap Between Dissimilar Road Types With Foam”

Local Infrastructure: The Devil Is In The Details

About two months ago I rode my bike to work like any other day, but on the way home a construction project seemed to have spontaneously started at one of the bridges that I pass over. Three lanes had merged into one which, for a federal highway, seemed like a poorly planned traffic pattern for a such a major construction project. As it happens, about an hour after I biked across this bridge that morning both outside sections of the bridge fell into the water. There was no other physical damage that seemed to explain why parts of a bridge on U.S. 1 would suddenly collapse.

The intriguing thing about this bridge collapse was that the outer retaining wall and about half of the sidewalk on both the northbound side and the southbound side had fallen into the water at the same time. This likely wasn’t caused by something like a boat impact, car accident, or an overweight truck. Indeed, Florida Department of Transportation (FDOT) investigated the incident and found that two post tension wires that held these sections of the bridge together had failed, making it unsafe for pedestrians and bicyclists but also for any boaters below. Continue reading “Local Infrastructure: The Devil Is In The Details”