The Death Of Baseload And Similar Grid Tropes

Anyone who has spent any amount of time in or near people who are really interested in energy policies will have heard proclamations such as that ‘baseload is dead’ and the sorting of energy sources by parameters like their levelized cost of energy (LCoE) and merit order. Another thing that one may have noticed here is that this is also an area where debates and arguments can get pretty heated.

The confusing thing is that depending on where you look, you will find wildly different claims. This raises many questions, not only about where the actual truth lies, but also about the fundamentals. Within a statement such as that ‘baseload is dead’ there lie a lot of unanswered questions, such as what baseload actually is, and why it has to die.

Upon exploring these topics we quickly drown in terms like ‘load-following’ and ‘dispatchable power’, all of which are part of a healthy grid, but which to the average person sound as logical and easy to follow as a discussion on stock trading, with a similar level of mysticism. Let’s fix that.

Continue reading “The Death Of Baseload And Similar Grid Tropes”

The Great Northeast Blackout Of 1965

At 5:20 PM on November 9, 1965, the Tuesday rush hour was in full bloom outside the studios of WABC in Manhattan’s Upper West Side. The drive-time DJ was Big Dan Ingram, who had just dropped the needle on Jonathan King’s “Everyone’s Gone to the Moon.” To Dan’s trained ear, something was off about the sound, like the turntable speed was off — sometimes running at the usual speed, sometimes running slow. But being a pro, he carried on with his show, injecting practiced patter between ad reads and Top 40 songs, cracking a few jokes about the sound quality along the way.

Within a few minutes, with the studio cart machines now suffering a similar fate and the lights in the studio flickering, it became obvious that something was wrong. Big Dan and the rest of New York City were about to learn that they were on the tail end of a cascading wave of power outages that started minutes before at Niagara Falls before sweeping south and east. The warbling turntable and cartridge machines were just a leading indicator of what was to come, their synchronous motors keeping time with the ever-widening gyrations in power line frequency as grid operators scattered across six states and one Canadian province fought to keep the lights on.

They would fail, of course, with the result being 30 million people over 80,000 square miles (207,000 km2) plunged into darkness. The Great Northeast Blackout of 1965 was underway, and when it wrapped up a mere thirteen hours later, it left plenty of lessons about how to engineer a safe and reliable grid, lessons that still echo through the power engineering community 60 years later.

Continue reading “The Great Northeast Blackout Of 1965”

Field Guide To North American Crop Irrigation

Human existence boils down to one brutal fact: however much food you have, it’s enough to last for the rest of your life. Finding your next meal has always been the central organizing fact of life, and whether that meal came from an unfortunate gazelle or the local supermarket is irrelevant. The clock starts ticking once you finish a meal, and if you can’t find the next one in time, you’ve got trouble.

Working around this problem is basically why humans invented agriculture. As tasty as they may be, gazelles don’t scale well to large populations, but it’s relatively easy to grow a lot of plants that are just as tasty and don’t try to run away when you go to cut them down. The problem is that growing a lot of plants requires a lot of water, often more than Mother Nature provides in the form of rain. And that’s where artificial irrigation comes into the picture.

We’ve been watering our crops with water diverted from rivers, lakes, and wells for almost as long as we’ve been doing agriculture, but it’s only within the last 100 years or so that we’ve reached a scale where massive pieces of infrastructure are needed to get the job done. Above-ground irrigation is a big business, both in terms of the investment farmers have to make in the equipment and the scale of the fields it turns from dry, dusty patches of dirt into verdant crops that feed the world. Here’s a look at the engineering behind some of the more prevalent methods of above-ground irrigation here in North America.

Continue reading “Field Guide To North American Crop Irrigation”

A fisheye lens picture over the Junma Solar Power station in the Mongolian desert. There is a large image of a horse made out of solar panels in the image. A sunset is visible in the upper right of the image, but most the picture is brown sand where there aren't dark blue solar panels.

China’s Great Solar Wall Is A Big Deal

Data centers and the electrification of devices that previously ran on fossil fuels is driving increased demand for electricity around the world. China is addressing this with a megaproject that is a new spin on their most famous piece of infrastructure.

At 250 miles long and 3 miles wide with a generating capacity of 100 GW, the Great Solar Wall will be able to provide enough energy to power Beijing, although the energy will more likely be used to power industrial operations also present in the Kubuqi Desert. NASA states, “The Kubuqi’s sunny weather, flat terrain, and proximity to industrial centers make it a desirable location for solar power generation.” As an added bonus, previous solar installations in China have shown that they can help combat further desertification by locking dunes in place and providing shade for plants to grow.

Engineers must be having fun with the project as they also designed the Guinness World Record holder for the largest image made of solar panels with the Junma Solar Power Station (it’s the horse in the image above). The Great Solar Wall is expected to be completed by 2030 with 5.4 GW already installed in 2024.

Want to try solar yourself on a slightly smaller scale? How about this solar thermal array inspired by the James Webb Telescope or building a solar-powered plane?

Field Guide To The North American Weigh Station

A lot of people complain that driving across the United States is boring. Having done the coast-to-coast trip seven times now, I can’t agree. Sure, the stretches through the Corn Belt get a little monotonous, but for someone like me who wants to know how everything works, even endless agriculture is fascinating; I love me some center-pivot irrigation.

One thing that has always attracted my attention while on these long road trips is the weigh stations that pop up along the way, particularly when you transition from one state to another. Maybe it’s just getting a chance to look at something other than wheat, but weigh stations are interesting in their own right because of everything that’s going on in these massive roadside plazas. Gone are the days of a simple pull-off with a mechanical scale that was closed far more often than it was open. Today’s weigh stations are critical infrastructure installations that are bristling with sensors to provide a multi-modal insight into the state of the trucks — and drivers — plying our increasingly crowded highways.

Continue reading “Field Guide To The North American Weigh Station”

Reconductoring: Building Tomorrow’s Grid Today

What happens when you build the largest machine in the world, but it’s still not big enough? That’s the situation the North American transmission system, the grid that connects power plants to substations and the distribution system, and which by some measures is the largest machine ever constructed, finds itself in right now. After more than a century of build-out, the towers and wires that stitch together a continent-sized grid aren’t up to the task they were designed for, and that’s a huge problem for a society with a seemingly insatiable need for more electricity.

There are plenty of reasons for this burgeoning demand, including the rapid growth of data centers to support AI and other cloud services and the move to wind and solar energy as the push to decarbonize the grid proceeds. The former introduces massive new loads to the grid with millions of hungry little GPUs, while the latter increases the supply side, as wind and solar plants are often located out of reach of existing transmission lines. Add in the anticipated expansion of the manufacturing base as industry seeks to re-home factories, and the scale of the potential problem only grows.

The bottom line to all this is that the grid needs to grow to support all this growth, and while there is often no other solution than building new transmission lines, that’s not always feasible. Even when it is, the process can take decades. What’s needed is a quick win, a way to increase the capacity of the existing infrastructure without having to build new lines from the ground up. That’s exactly what reconductoring promises, and the way it gets there presents some interesting engineering challenges and opportunities.

Continue reading “Reconductoring: Building Tomorrow’s Grid Today”

Remotely Interesting: Stream Gages

Near my childhood home was a small river. It wasn’t much more than a creek at the best of times, and in dry summers it would sometimes almost dry up completely. But snowmelt revived it each Spring, and the remains of tropical storms in late Summer and early Fall often transformed it into a raging torrent if only briefly before the flood waters receded and the river returned to its lazy ways.

Other than to those of us who used it as a playground, the river seemed of little consequence. But it did matter enough that a mile or so downstream was some sort of instrumentation, obviously meant to monitor the river. It was — and still is — visible from the road, a tall corrugated pipe standing next to the river, topped with a box bearing the logo of the US Geological Survey. On occasion, someone would visit and open the box to do mysterious things, which suggested the river was interesting beyond our fishing and adventuring needs.

Although I learned quite early that this device was a streamgage, and that it was part of a large network of monitoring instruments the USGS used to monitor the nation’s waterways, it wasn’t until quite recently — OK, this week — that I learned how streamgages work, or how extensive the network is. A lot of effort goes into installing and maintaining this far-flung network, and it’s worth looking at how these instruments work and their impact on everyday life.

Continue reading “Remotely Interesting: Stream Gages”