A Bicycle Powered By A Different Kind Of Eddy

When you think of a bicycle and an Eddy, you’d be forgiven for thinking first of Eddy Merckx, one of the most successful competitive cyclists to ever live. But this bicycle, modified by [Tom Stanton] as shown in the video below the break, has been modified by ditching its direct drive gearing in favor of using the friction-like eddy currents between magnets and copper to transfer power to the wheel.

Before even beginning to construct a mechanism for powering the bicycle, [Tom] had to figure out the basics: what kind of materials could be used for a metal disk? The answer, after much testing, turned out to be copper. What kind of magnets work best, and in what formation? Expensive high grade, aligned North to South pole for added eddy-dragging goodness. Would the mechanism work with any efficiency?

The end result is interesting to watch, and it’s not exactly as you’d have expected. Yes, eddy currents drive the copper hub, but at a 100 RPM difference. Where does all of that energy go? Hint: not to the wheel, and certainly not into propelling the bicycle. All in all it’s a fantastic experiment with unpredictable results.

If bicycle based bumbling about bakes your biscuits, you might appreciate this tennis-ball-enhanced ride too.

Continue reading “A Bicycle Powered By A Different Kind Of Eddy”

Bridging The Gap Between Dissimilar Road Types With Foam

When you think of driving up or down an embankment, do you ever wonder how much foam you’re currently driving on? Probably not, because it hardly seems like a suitable building material. But as explained by [Practical Engineering] in the video below the break, using an expanded material to backfill an embankment isn’t as dense as it sounds.

In many different disciplines, mating dissimilar materials can be difficult: Stretchy to Firm; Soft to Hard; Light to Heavy. It’s that last one, Light to Heavy, that is a difficult match for roadways. A bridge may be set down in bedrock, but the embankments approaching it won’t be. The result? Over time, embankment settles lower than the bridge does, causing distress for cars and motorists alike. What’s the solution?

To mitigate this, engineers have started to employ less dirty materials to build their otherwise soil based embankments. Lightweight concrete is one solution, but another is Expanded Polystyrene (EPS) foam. Its light weight makes installation simple in anything but a strong breeze, and it’s inexpensive and durable. When used properly, it can last many years and provide a stable embankment that won’t settle as far or as quickly as one made of dirt. Because as it turns out, dirt is heavy. Who knew?

Aside from roadways and bespoke aircraft, EPS foam has also been used for making home insulation. What’s your favorite use for EPS foam? Let us know in the comments below.

Continue reading “Bridging The Gap Between Dissimilar Road Types With Foam”

Resurrecting PONG, One Jumper Wire At A Time

Between 1976 and 1978, over one million Coleco Telstar video game consoles were sold. The Killer App that made them so desirable? PONG. Yep, those two paddles bouncing a ball around a blocky tennis court were all the rage and helped usher in a new era. And as [Dave] of Dave’s Garage shows us in the video below the break, the bringing the old console back to life proved simpler than expected!

Thankfully, the console is built around what [Dave] quite aptly calls “PONG on a chip”, the General Instrument AY-3-8500 which was designed to make mass production of consoles possible. The chip actually contains several games, although PONG was the only one in use on the Coleco.

After removing the CPU from the non-functional console, [Dave] breathed life into it by providing a 2 MHz clock signal that was generated by an Arduino, of all things. A typical 2N2222 amplifies the audio, and a quick power up showed that the chip was working and generating audio.

Video is smartly taken care of just as it was in the original design, by combining various signals with a 4072 OR gate. With various video elements and synchronization patterns combined into a composite video signal, [Dave] was able to see the game on screen, but then realized that he’d need to design some “paddles”. We’ll leave that up to you to watch in the video, but make sure to check the comments section for more information on the design.

Is a breadboarded PONG console not retro enough for you? Then check out this old school mechanical version that was found languishing in a thrift store.

Continue reading “Resurrecting PONG, One Jumper Wire At A Time”

The Robots Of Fukushima: Going Where No Human Has Gone Before (And Lived)

The idea of sending robots into conditions that humans would not survive is a very old concept. Robots don’t heed oxygen, food, or any other myriad of human requirements. They can also be treated as disposable, and they can also be radiation hardened, and they can physically fit into small spaces. And if you just happen to be the owner of a nuclear power plant that’s had multiple meltdowns, you need robots. A lot of them. And [Asianometry] has provided an excellent synopsis of the Robots of Fukushima in the video below the break.

Starting with robots developed for the Three Mile Island incident and then Chernobyl, [Asianometry] goes into the technology and even the politics behind getting robots on the scene, and the crossover between robots destined for space and war, and those destined for cleaning up after a meltdown.

The video goes further into the challenges of putting a robot into a high radiation environment. Also interesting is the state of readiness, or rather the lack thereof, that prompted further domestic innovation.

Obviously, cleaning up a melted down reactor requires highly specialized robots. What’s more, robots that worked on one reactor didn’t work on others, creating the need for yet more custom built machines. The video discusses each, and even touches on future robots that will be needed to fully decommission the Fukushima facility.

For another look at some of the early robots put to work, check out the post “The Fukushima Robot Diaries” which we published over a decade ago.

Continue reading “The Robots Of Fukushima: Going Where No Human Has Gone Before (And Lived)”

Restarting The Grid When The Grid Is Off The Grid

If you watch YouTube long enough, it seems like going “off the grid” is all the rage these days. But what if the thing that goes off the grid is the grid itself? In the video below the break, [Grady] with Practical Engineering explores the question: How do you restart an entire power grid after it’s gone offline? It’s a brilliantly simple deep dive into what it takes to restore power to large amounts of customers without causing major damage to not just the grid, but the power generators themselves.

What’s A Power Grid Operators Favorite Band?

The hackers among us who’ve dealt with automotive alternators know it must be excited in order to generate electricity. What does that even mean, and how does it affect the grid? Simply put, it takes power to make power. For example, old heavy equipment had what they called pony motors — a small easy to start engine that’s sole purpose was to start a much larger engine. Aircraft have auxiliary power units (APUs) for the same purpose. What do power grids have? You’ll have to watch the video to find out.

Once at least two power generators are online, grid operators can just flip the switch and start feeding power to customers, right? Not quite. [Grady] once again uses a clever test jig and an oscilloscope to show the damage that can occur if things aren’t done just right. It’s a fascinating video well worth watching.

Learn how grid operators use a Power Grid Emulator called LEGOS to help them with keeping the electrons flowing in the right direction.

Continue reading “Restarting The Grid When The Grid Is Off The Grid”

Rocket Mounted 3D Printed Camera Wheel Tries, Succeeds, And Also Fails

[Joe] at BPS.space has a thing for rockets, and his latest quest is to build a rocket that will cross the Kármán Line and launch into the Final Frontier. And being the owner of a YouTube channel, he wants to have excellent on-board video that he can share. The trouble? Spinning. A spinning rocket is a stable rocket, especially as altitude increases. So how would [Joe] get stable video from a rocket spinning at several hundred degrees per second? That’s the question being addressed in the video below the break.

The de-spun video looks quite good

Rather than use processing power to stabilize video digitally, [Joe] decided to take a different approach: Cancelling out the spin with a motor, essentially making a camera-wielding reaction wheel that would stay oriented in one direction, no matter how fast the rocket itself is spinning.

Did it work? Yes… and no. The design was intended to be a proof of concept, and in that sense there was a lot of success and some excellent video was taken. But as with many proof of concept prototypes, the spinning camera module has a lot of room for improvement. [Joe] goes into some details about the changes he’ll be making for revision 2, including a different motor and some software improvements. We certainly look forward to seeing the progress!

To get a better idea of the problem that [Joe] is trying to solve, check out this 360 degree rocket cam that we featured a few years ago.

Continue reading “Rocket Mounted 3D Printed Camera Wheel Tries, Succeeds, And Also Fails”

Radial Vector Reducer Rotates At Really Relaxed Velocity

When [Michael Rechtin] learned about Radial Vector Reducers, the underlying research math made his head spin, albeit very slowly. Realizing that it’s essentially a cycloidal drive meshed with a planetary gear set, he got to work in CAD and, in seemingly no time, had a design to test. You can see the full results of his experiment in the video below the break. Or head on out to Thingiverse to download the model directly.

[Michael] explains that while there are elements of a cycloidal drive, itself a wonderfully clever gear reduction mechanism, the radial vector reducer actually has more bearing surfaces, and should be more durable as a result. Two cycloidal disks are driven by a planetary gear reduction for an even greater reduction, but they don’t even spin, they just cycle in a way that drives the outer shell, setting them further apart from standard cycloidal drives.

How would this 3D printed contraption hold up? To test this, [Michael] built a test jig with a NEMA 23 stepper providing the torque, and an absurd monster truck/front loader wheel — also printed — to provide traction in the grass and leaves of his back yard. He let it drive around its tether for nearly two weeks before disassembling it to check for wear. How’d it look? You’ll have to check the video to find out.

If you aren’t familiar with cycloidal drives, check out this fantastic explanation we featured. As for planetary drives, what better way to demonstrate it than by an ornamental planetary gear clock!

Continue reading “Radial Vector Reducer Rotates At Really Relaxed Velocity”