Is A Cheap Frequency Standard Worth It?

In the quest for an accurate frequency standard there are many options depending on your budget, but one of the most affordable is an oven controlled crystal oscillator (OCXO). [RF Burns] has a video looking at one of the cheapest of these, a sub ten dollar AliExpress module.

A crystal oven is a simple enough device — essentially just a small box containing a crystal oscillator and a thermostatic heater. By keeping the crystal at a constant temperature it has the aim of removing thermal drift from its output frequency, meaning that once it is calibrated it can be used as a reasonably good frequency standard. The one in question is a 10 MHz part on a small PCB with power supply regulator and frequency trimming voltage potentiometer, and aside from seeing it mounted in an old PSU case we also are treated to an evaluation of its adjustment and calibration.

Back in the day such an oscillator would have been calibrated by generating an audible beat with a broadcast standard such as WWV, but in 2024 he uses an off-air GPS standard to calibrate a counter before measuring the oven crystal. It’s pretty good out of the box, but still a fraction of a Hertz off, thus requiring a small modification to the trimmer circuit. We’d be happy with that.

For the price, we can see that one of these makes sense as a bench standard, and we say this from the standpoint of a recovering frequency standard nut.

Continue reading “Is A Cheap Frequency Standard Worth It?”

Confessions Of A Reformed Frequency Standard Nut

Do you remember your first instrument, the first device you used to measure something? Perhaps it was a ruler at primary school, and you were taught to see distance in terms of centimetres or inches. Before too long you learned that these units are only useful for the roughest of jobs, and graduated to millimetres, or sixteenths of an inch. Eventually as you grew older you would have been introduced to the Vernier caliper and the micrometer screw gauge, and suddenly fractions of a millimetre, or thousandths of an inch became your currency.  There is a seduction to measurement, something that draws you in until it becomes an obsession.

Every field has its obsessives, and maybe there are bakers seeking the perfect cup of flour somewhere out there, but those in our community will probably focus on quantities like time and frequency. You will know them by their benches surrounded by frequency standards and atomic clocks, and their constant talk of parts per billion, and of calibration. I can speak with authority on this matter, for I used to be one of them in a small way; I am a reformed frequency standard nut. Continue reading “Confessions Of A Reformed Frequency Standard Nut”

Crystal Oven Temperature Sensor Reads 0.01F Resolution

crystal-oven-temperature-sensor

[Scott Harden] continues his work on a high precision crystal oven. Being able to set a precise temperature depends on the ability to measure temperature with precision as well. That’s where this circuit comes in. It’s based around an LM335 linear temperature sensor. He’s designed support circuitry that can read temperature with hundredth-of-a-degree resolution.

Reading the sensor directly with an AVR microcontroller’s Analog-to-Digital Converter (ADC) will only yield about 1-2 degrees of range. He approached the problem by amplifying the output of the sensor to target a specific range. For the demonstration he adjusts the swing from 0-5V to correspond to a room temperature to body temperature range.

Of course he’s using analog circuitry to make this happen. But before our digital-only readers click away you should view his video explanation. This exhibits the base functionality of OpAmps. And we think [Scott] did a great job of presenting the concepts by providing a clear and readable schematic and explaining each part slowly and completely.

So what’s this crystal oven we mentioned? It’s a radio project that goes back several years.

Continue reading “Crystal Oven Temperature Sensor Reads 0.01F Resolution”