How Early Radio Receivers Worked

If you’ve ever built a crystal radio, there’s something magical about being able to pull voices and music from far away out of thin air. If you haven’t built one, maybe you should while there’s still something on the AM band. Of course, nowadays the equivalent might be an SDR. But barring a computer solution, there are not many ways to convert radio waves into intelligence. From a pocket radio to advanced RADAR to a satellite in orbit, receiving a radio wave is accomplished in pretty much the same way.

There are, however, many ways to modulate and demodulate that radio wave. Of course, an AM radio works differently than an FM radio. A satellite data downlink works differently, too. But the process of capturing the radio wave from the air and getting them into a form ready for further processing hasn’t changed much over the years.

In this article, I’ll talk about the most common radio receiver architectures you may have seen in years past, and next week I’ll talk about modern architectures. Either way, understanding receiver architectures will help you design new radios or troubleshoot them.

Continue reading “How Early Radio Receivers Worked”

Hackaday Podcast 070: Memory Bump, Strontium Rain, Sentient Solder Smoke, And Botting Browsers

Hackaday editors Elliot Williams and Mike Szczys bubble sort a sample set of amazing hacks from the past week. Who has even used the smart chip from an old credit card as a functional component in their own circuit? This guy. There’s something scientifically devious about the way solder smoke heat-seeks to your nostrils. There’s more than one way to strip 16-bit audio down to five. And those nuclear tests from the 40s, 50s, and 60s? Those are still affecting how science takes measurements of all sorts of things in the world.

Direct download (~65 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 070: Memory Bump, Strontium Rain, Sentient Solder Smoke, And Botting Browsers”

Credit Card Chip Used To Make Crystal Radio

Perhaps the simplest radio one can build is the crystal radio. Using a diode as a detector, the design generally uses less than 10 components and no battery, getting its power to run from the radio signal itself. [Billy Cheung] decided to build a crystal radio using a rather unconventional detector – the smart chip in a common credit card.

This is possible because the smart chip on many credit cards contains a diode. It’s then a simple matter of hooking up the right pads on the credit card to the rest of a crystal radio circuit, and you’re all set. Of course, [Billy] goes the whole hog, building the entire radio on a single credit card. Other cards are cut up to create bobbins for winding coils to form a variable inductor, used to tune the radio. Doing this allows for a much cleaner, thinner design, rather than using a variable capacitor which is comparatively hard to find. Turning the dial allows stations to be tuned in, and with a high impedance earbud hooked up, you’re listening to AM radio. Oh, and don’t forget an antenna!

[Billy] breaks down the details for anyone wishing to replicate the feat, going so far as to wind the coils in real time in his Youtube video. Cutting templates and other details are available on Github. While it’s not going to be the most replicated hack, as it requires the destruction of a credit card to achieve, we love the ingenuity. And, if society does collapse, we’ll all have a great source of diodes when the ATMs have all become useless. Video after the break.

[Thanks to Zane Atkins for the tip!]

Continue reading “Credit Card Chip Used To Make Crystal Radio”

[Eric] Talks Crystal Radios

The AM broadcast band doesn’t have a lot of mainstream programming on it across much of the United States today. That’s a shame because a lot of kids got their first taste of radio and electronics by building simple crystal radios. [Eric Wrobbel] has a well-done page discussing some of the crystal radio kits and toys that have been around.

[Eric] should know, as he’s written two books on toy crystal radios. The pictures range from a 1945-era “Easy Built Radio Kit” which looks like a piece of masonite with a coil, some Fahnestock clips, and a cat whisker, to a very slick looking Tinymite from 1949. Honestly, though, the one we really want is the X-50 Space Helmet Radio that comes in a box marked “For Young Moon Travelers.”

Continue reading “[Eric] Talks Crystal Radios”

A Modern Take On The Crystal Radio

We’ll admit that [3DSage] has a pretty standard design for a crystal radio. What we liked, though, was the 3D printed chassis with solderless connections. Of course, the working pieces aren’t 3D printed — you need an earphone, a diode, and some wire too. You can see the build and the finished product in the video below.

Winding the coil is going to take awhile, and the tuning is done with the coil and capacitance built into the tuning arrangement so you won’t have to find a variable capacitor for this build. There is a picture of the radio using a razor blade point contact with a pencil lead, so if you want to really scrimp on the diode, that works too, and you can see how at the end of the video.

We did like the use of cord ends from a sewing and craft supply store to serve as solderless springs. This would be a great item to print off a few dozen copies and use it for a school or youth group activity. You might want to pair it with an AM transmitter, though so the kids won’t be dismayed at what is playing on AM in most markets. [3DSage] uses a sink for ground — literally a kitchen sink. However, if you try this, make sure all the pipes are metal or you won’t get a good ground and you probably won’t pick up any stations.

We’d like to get some of those springs and make some other kind of starter projects with them like the kits many of us had as kids. This reminded us of the old foxhole radios, found during World War II.

Continue reading “A Modern Take On The Crystal Radio”

Radio And Phone Speaker Has Style

Building a crystal radio isn’t exactly rocket science. Some people who build them go for pushing them technically as far as they can go. Others, like [Billy Cheung], go for style points. The modular radio and phone speaker looks like it came out of the movie Brazil. The metallic gramophone-like speaker horn adds to the appeal and mechanically amplifies the sound, too.

The video (see below) isn’t exactly a how-to, but if you watch to the end there is enough information that you could probably reproduce something at least similar. There are actually several horns. One is made from copper, another from paper, and one from a plastic bottle.

Continue reading “Radio And Phone Speaker Has Style”

High Impedance Headphones? They’re In The Can!

[George Trimble] likes to build crystal radios. The original crystal radio builders used high impedance headphones. In modern builds, you are as likely to include a powered amplifier to drive a speaker or normal headphones (which are usually around 4 to 16 ohms).

[George] builds his own speakers using chile cans, some wire, a few magnets, part of a Pepsi can (we are pretty sure someone will leave a comment that Coke cans sound better), and the iron core out of an audio transformer. You can see a very detailed video of the process, below.

There is a little woodworking and hot gluing involved. The result is decidedly homemade looking, but if you want to say you built it yourself (or, if you are a prepper trying to get ready to ¬†rebuild after the apocalypse and you can’t find a cache of headphones) this might be just the ticket.

Most of the headphone hacks we see start with a pair of headphones. That’s a bit tautological, but the goal is usually to add features, not make the whole thing. It does give you some hacker cred, though, to be able to look at the other guy’s radio and say, “Oh. I see you used¬†commercial headphones.”

Continue reading “High Impedance Headphones? They’re In The Can!”