Quetzal-1 Satellite Goes Open Source

Back in 2020, students from Universidad Del Valle De Guatemala (UVG) pulled off a really impressive feat, designing and building a CubeSat that lasted a whopping 211 days in orbit. In addition to telemetry and radio equipment, it carried a black-and-white camera payload.

But it turns out space is hard. The first pictures were solid black or white, with the automatic exposure process failing pretty badly. A pair of good pictures were taken by waiting until the satellite was passing over Guatemala during sunrise or sunset. A hung I2C bus led to battery drain, and the team tried a system reset to clear the hung state. Sadly the craft never came back to life after the reset, likely because of one of the Lithium-Ion battery cells failed completely in the low charge state.

That was 2020, so why are we covering it now? Because the project just released a massive trove of open source design documents, the software that ran on the satellite and ground station, and all the captured telemetry from the flight. It’s the ultimate bootstrap for anyone else designing a CubeSat, and hopefully provides enough clues to avoid some of the same issues.

Even though the mission had problems, it did achieve a lot of milestones, including the first picture of Earth taken by a Central American satellite. Even coming online and making radio contact from orbit to an earthbound station is quite a feat. The team is already looking forward to Quetzal-2, so stay tuned for more!

And if you want the details on the Quetzal-1 design, and what went wrong with the electrical system, both PDF papers have been released. Seeing more open source in space is an encouraging development, and one that should continue to grow as the cost of payloads to orbit continues to fall. We’ve covered the UPSat satellite, the PyCubed framework, and even the RTL-SDR for listening to satellite radio traffic.

Flying The First Open Source Satellite

The Libre Space Foundation is an organization dedicated to the development of libre space hardware. It was born from the SatNOGS project — the winners of the first Hackaday Prize — and now this foundation is in space. The Libre Space Foundation hitched a ride on the Orbital ATK launch yesterday, and right now their completely Open Source cube sat is on its way to the International Space Station.

The cube sat in question is UPSat, a 2U cubesat that is completely Open Source. Everything from the chassis to the firmware is completely Open, with all the source files hosted on GitHub.

UPSat is currently on its way to the International Space Station stowed in an Orbital ATK Cygnus cargo spacecraft. From here, the UPSat will be unloaded by members of the current ISS expedition and deployed with help from NanoRacks. Basically, the first Open Source satellite will be tossed overboard from the International Space Station. If you want to listen in on the data UPSat is beaming down, build a SatNOGS ground station and tune into 435.765 MHz. With a good antenna, you should be able to hear it when the ISS is in the sky, or a few times a week.

You can check out the launch of the Cygnus the UPSat is flying on in the video below. NASA also recorded a 360° video from the launch pad that unfortunately cuts out in the first few seconds after launch.

Continue reading “Flying The First Open Source Satellite”

Send An Arduino To The Moon For $300

sat

We’ve seen Kickstarter campaigns to put a single satellite into space and one to launch your own personalized postage-stamp sized satellite into low Earth orbit. This time, though, you can break the bonds of Earth and send your own Arduino compatible satellite on a collision course with the moon. The project is called Pocket Spacecraft, and exactly as its name implies, it allows you to send a small, flat, 8 cm diameter spacecraft to the surface of the moon.

The pocket spacecraft are made of metallized kapton, a very thin membrane stretched inside a loop of wire. On board this paper-thin spacecraft are a pair of solar cells and a bare die MSP430 microcontroller connected to a suite of sensors. Before launch, you can program your tiny space probe with commands to relay data back to Earth, either useful scientific data or a simple tweet.

These pocket spacecraft will be launched from a cubesat – a highly successful line of amateur spacecraft that are usually launched by hitching a ride with larger commercial satellites. To get from low Earth orbit to the moon is much harder than just hitchhiking, so the cubesat mothership comes equipped with either a solar sail or its own engine that electrolysed water into hydrogen and oxygen, the perfect rocket fuel.

Pocket Spacecraft is an amazingly impressive feat; there are literally dozens of amateur-built spacecraft orbiting above our heads right now, but so far none have ventured more than a few hundred miles away from their home planet. Getting to the moon with an amateur spacecraft is an amazing accomplishment, and definitely worthy of the $300 price tag.