Intel’s Forgotten 1970s Dual Core Processor

Can you remember when you received your first computer or device containing a CPU with more than one main processing core on the die? We’re guessing for many of you it was probably some time around 2005, and it’s likely that processor would have been in the Intel Core Duo family of chips. With a dual-core ESP32 now costing relative pennies it may be difficult to grasp in 2020, but there was a time when a multi-core processor was a very big deal indeed.

What if we were to tell you that there was another Intel dual-core processor back in the 1970s, and that some of you may even have owned one without ever realizing it? It’s a tale related to us by [Chris Evans], about how a team of reverse engineering enthusiasts came together to unlock the secrets of the Intel 8271.

If you’ve never heard of the 8271 you can be forgiven, for far from being part of the chip giant’s processor line it was instead a high-performance floppy disk controller that appeared in relatively few machines. An unexpected use of it came in the Acorn BBC Micro which is where [Chris] first encountered it. There’s very little documentation of its internal features, so an impressive combination of decapping and research was needed by the team before they could understand its secrets.

As you will no doubt have guessed, what they found is no general purpose application processor but a mask-programmed dual-core microcontroller optimized for data throughput and containing substantial programmable logic arrays (PLAs). It’s a relatively large chip for its day, and with 22,000 transistors it dwarfs the relatively svelte 6502 that does the BBC Micro’s heavy lifting. Some very hard work at decoding the RMO and PLAs arrives at the conclusion that the main core has some similarity to their 8048 architecture, and the dual-core design is revealed as a solution to the problem of calculating cyclic redundancy checks on the fly at disk transfer speed. There is even another chip using the same silicon in the contemporary Intel range, the 8273 synchronous data link controller simply has a different ROM. All in all the article provides a fascinating insight into this very unusual corner of 1970s microcomputer technology.

As long-time readers will know, we have an interest in chip reverse engineering.

Dual Core Arduino For More Pins

There are easy ways of getting more I/O pins for any project; shift registers, I2C expanders, or ADCs will give you plenty of pins for whatever project you have in mind. All these require extra components, though. Enter the ExtraCore library for Arduino, a software library that turns two or more Arduinos into a multi-core microcontroller with more pins than you’ll ever need.

The ExtraCore library comes from [Dustin Andrews], and allows anyone to control the input and output pins of two Arduinos with the same ease as a single Arduino.

The hardware setup is fairly simple – just connect A4, A5, power, and ground on both Arduinos together. After installing the ‘client’ sketch on the second Arduino, you can modify the ‘manager’ sketch to suit whatever project you’re building. From there you’ve nearly doubled the number of Arduino pins your project can control.

It may not be the most practical use of two Arduinos, but it’s certainly impressive. You can pick up [Dustin]’s code over on GitHub.

24 Core Ikea Cluster


[Janne] does freelance animation and wanted something with a bit more CPU to get his rendering jobs done. He picked up an Ikea ‘Helmer’ cabinet and refitted it to hold six Intel quad cores, six Gigabyte motherboards with 8GB of ram each and six 400 watt power supplies. He seems happy with it – I think it just needs some custom power wiring and an integrated Gig-E switch to achieve perfection. What? I’m not jealous at all.