Flashing Light Prize 2018: This Time With Neon

The Flashing Light Prize is back this year with a noble twist. And judging from the small set of entries thus far, this is going to be an interesting challenge.

Last year’s Flashing Light Prize was an informal contest with a simple goal: flash an incandescent lamp in the most interesting way possible. This year’s rules are essentially the same as last year, specifying mainly that the bulb itself has to light up — no mechanical shutters — and that it has to flash at 1 Hz with a 50% duty cycle for at least five minutes. But where last year’s contest specified incandescent lamps, this year you’ve got to find a way to flash something with neon in it. It could be an off-the-shelf neon pilot light, a recycled neon sign, or even the beloved Nixie tube. But we suspect that points will be awarded for extreme creativity, so it pays to push the envelope. Last year’s winner used a Wimhurst machine to supply the secondary of an ignition coil and flash a pair of bulbs connected across the primary, so the more Rube Goldberg-esque, the better your chances.

There are only a handful of entries right now, with our favorite being [Ben Krasnow]’s mashup of electricity, mechanics, chemistry, and physics. You’ve got until March 15th to post your flashing neon creation, and there are two categories this year, each with a £200 prize. Get your flash on and win this one for Hackaday.

Continue reading “Flashing Light Prize 2018: This Time With Neon”

Doomed Incandescent Light Blinker

[Jānis]’s entry for the Flashing Light Prize was doomed from the start. Or should we say Doomed? It was a complicated mess of Rube-Goldbergery that essentially guaranteed that he’d have no time for making a proper video and submitting and entry. But it also ran Doom. Or at least ran on Doom.

(Note: [Jānis] sent us this hack in the e-mail — there’s no link for this blog post. You’re reading it here and now.)

It starts with a DC motor salvaged from a DVD player that spins a wheel that flips a switch back and forth, which in turn flips the polarity of the power on the motor. It’s like a most-useless machine, but with no human involved. This contraption periodically presses a button on a gutted mouse.

Pressing the mouse button on one computer fires a rocket in a multiplayer Doom game, and triggers a light on a wall when it does. A second Doom player, on another computer, sits facing the wall. Solar cells dangled in front of Player 2’s monitor emit high and low voltages as the LCD blinks on and off. That output goes into the ADC of an Arduino clone that drives a transistor that drives a relay that turns on and off a lightbulb.

We had a lot of fun watching all of the entries for the Flashing Light Prize, and we were also stoked by the presence of so many Hackaday regulars in the Honourable Mention list. (Sad to see [Sprite]’s ping-flasher didn’t make the cut!)

If you, like [Jānis] are still sitting on a design, don’t fret. It looks like the prize will make a return next year. Woot!

Continue reading “Doomed Incandescent Light Blinker”

Blinking A Light With Ping

The Flashing Light Prize is on right now, and that means all our favorite geeks and YouTubers are aspiring to what could be done with a 555. The rules are simple: turn a light bulb on and off somehow. [Sprite_tm] is answering the call, and he’s blinking lightbulbs at the speed of light.

[Sprite]’s method of blinking a light is simple: Use an ESP32 development board to turn on a relay. At the same time, send a packet out to the Internet and through four servers spread across the globe. When the packet goes through servers in Shanghai, the Netherlands, to Hong Kong, to Germany, and finally Japan — and back again — the light bulb turns off. It’s a physical demonstration of the speed of light and the quality of undersea optical fibers.

This route is quite long, and a reasonable estimate for the one-way, great circle path from Shanghai to the Netherlands to Hong Kong to Berlin and finally to somewhere near Osaka is about 36,000 km. A round trip for this light bulb packet is 72,000 km, or about 0.2 light-seconds. There are delays, of course, from fiber and cables not going directly over the Himalayas, delays in routers, and the difference between the speed of light in a vacuum and the speed of light in glass fiber. Still, light is quick, and the light blinks at about 1Hz.

You can check out [Sprite]’s entry video for the Flashing Light Prize below.

Continue reading “Blinking A Light With Ping”