Using A/C Frequency As A Clock Signal

A while back we saw a logic clock that used the alternating current frequency from the power grid to keep time. We asked for information on your projects that use this method and we got a lot of comments and tips. Today we’re sharing [Doug Jackson’s] method which he used in his word clock.

The schematic above is from that project and we’ve outlined the important part in green. [Doug] pulls a signal from the 9V AC power before it hits the bridge rectifier, using a 100K resistor and a zener diode to protect the microcontroller pin. The code for that project comes as a hex file but he sent us the C code pertaining to this timing circuit. It’s written for PIC but you’ll have no trouble adapting it to other microcontroller families. Take a look after the break.

Continue reading “Using A/C Frequency As A Clock Signal”

Logic Clock Without An On-board Oscillator

[Lucassiglo21] developed this logic clock without using a crystal oscillator or a resonator. Instead, he’s letting the incoming electricity keep the time for him. The supply is AC at 50 Hz so he’s using some 4017 decade dividers to reduce that down to a 1 Hz signal. From there it keeps track of the ticks just like the last digital logic clock we saw.

If you’ve used AC line frequency as the clock source in your project we’d like to hear about it. Send us a tip and make sure your writeup includes a schematic. We’re especially interested to see if anyone has a good way of using this method with inexpensive microcontrollers.

Modifying R/C Frequency

rc_mod

Cheap radio controlled toys can provide countless hours of amusement, especially when friends have one too. You can’t always plan ahead enough for everyone to have a different frequency and sometimes, it just isn’t an option anyway. There is a solution, and it isn’t very difficult. [frickelkram] takes us through the process of changing the frequency that the toy runs on. He starts with the simplest way, which involves replacing one piece in the controller and simply adjusting the receiver. He notes that this often fails as the receiver just isn’t built to be adjusted easily. He continues to show how to get it done even if the first method fails.