Epic Clock Clocks The Unix Epoch

Admit it: when you first heard of the concept of the Unix Epoch, you sat down with a calculator to see when exactly 2³¹-1 seconds would be from midnight UTC on January 1, 1970. Personally, I did that math right around the time my company hired contractors to put “Y2K Suspect” stickers on every piece of equipment that looked like it might have a computer in it, so the fact that the big day would come sometime in 2038 was both comforting and terrifying.

[Forklift] is similarly entranced by the idea of the Unix Epoch and built a clock to display it, at least for the next 20 years or so. Accommodating the eventual maximum value of 2,147,483,647, plus the more practical ISO-8601 format, required a few more digits than the usual clock – sixteen to be exact. The blue seven-segment displays make an impression in the sleek wooden case, about which there is sadly no detail in the build log. But the internals are well documented, and include a GPS module and an RTC. The clock parses the NMEA time string from the satellites and syncs the RTC. There’s a brief video below of the clock in action.

We really like the look of [Forklift]’s clock, and watching the seconds count up to the eventual overflow seems like a fun way to spend the next two decades. It’s not the first Epoch clock we’ve featured, of course, but it’s pretty slick.

Continue reading “Epic Clock Clocks The Unix Epoch”

A 3D Printed Marble Clock

There are clocks with pendulums, gears, and circuits. How about one with marbles? Initially designed in the ’70s, rolling ball clocks came in many designs and materials, but this is the future, so [gocivici] has created an Instructable to show you how you can 3D print and build your own.

Three rows of marbles keep track of the time, one for one hour intervals, one for five-minute intervals and a third for one minute intervals. It makes reading the time a bit more difficult than a pair of hands, but more fun. The clock uses the weight of the marbles to know when a row needs resetting. When the fifth marble drops onto the minute row, its weight causes the row to tilt, sending all but one marble down to the bottom of the machine. The marble that caused the tilting is sent down to the row underneath, perhaps causing a cascade of marbles down to the bottom.

There is something quite satisfying about seeing the marbles moving around in [gocivici]’s mechanical marble clock. Sure, it’s probably too loud for the nightstand, but it keeps time and looks great. In this build a stepper motor drives the main wheel which acts as an elevator, grabbing a marble from the bottom and raising it to the top to tumble down and find its position among the rows.

Of course, at Hackaday we love clocks so there have been many clock builds showcased here; all you need do is a quick search for “clock” to find some incredible designs and builds. We’ve also featured similar marble clocks.

via BoingBoing

Continue reading “A 3D Printed Marble Clock”

The Tide Is High, And This Clock Lets You Know

In case you happen to have an ocean nearby, you’re probably familiar with its rising and falling tides. And if mudflat hiking is a thing in your area, you’re also aware of the importance of good timing and knowing when the water will be on its way back. Tide clocks will help you to be prepared, and they are a fun alternative to your usual clock projects. If you’re looking for a starting point, [rabbitcreek] put together an Arduino-based tide clock kit for educational purposes.

If you feel like you’re experiencing some déjà vu here, this indeed isn’t [rabbitcreek]’s first tide clock project. But unlike his prior stationary clock, he has now created a small and portable, coin-cell version to take with you out on the sea. And what shape would better fit than a 3D printed moon — unfortunately the current design doesn’t offer much waterproofing.

For the underlying tide calculation itself, [rabbitcreek] uses just like in his previous project [Luke Miller]’s location-based library for the ubiquitous DS1307 and DS3213 real-time clocks. Of course, if you also want to keep track of other events on your clock, why not set up calendar events for the next rising tide?

Transistor Logic Clock Gets Stacked Up

A couple years back we covered a very impressive transistor logic clock which was laid out so an observer could watch all of the counters doing their thing, complete with gratuitous blinkenlights. It had 777 transistors on 41 perfboards, and exactly zero crystals: the clock signal was extracted from the mains frequency of 50 Hz. It was obviously a labor of love and certainly looked impressive, but it wasn’t exactly the most practical timepiece we’d ever seen.

Creator [B Brett] recently wrote in to share news that the second version of his transistor logic clock has been completed, and we can confidently say it’s a triumph. He’s dropped the 41 perfboards in favor of 9 professionally fabricated PCBs, which this time around are stacked vertically to make it a bit more desktop friendly. The end goal of a transistor logic clock that you can take apart to study is the same, but this “MkII” as he calls it is a far more refined version of the concept.

In addition to using fewer boards, the new MkII design cuts the logic down to only 283 transistors. This is thanks in part to the fact that he allowed himself the luxury of including an oscillator this time. The clock uses a standard watch crystal at 32.768 KHz, the output of which is converted into a square wave through a Schmitt trigger. This is then fed into a divider higher up the stack which uses flip flops to produce 1Hz and 2Hz signals for use throughout the rest of the clock.

In addition to the original version of this project, we’ve also seen a beautiful single-board wall mounted version, and even a “dead bug” style one built from scraps.

Continue reading “Transistor Logic Clock Gets Stacked Up”

A BCD Clock For Your Desk

We see so many clocks here at Hackaday, and among those we see our fair share of binary clocks. But to see one that at first sight looks as though it might be a commercial product when it is in fact a one-off project is something special. That’s just what [Tobi4sDE] has done though, with his desktop BCD binary LED clock.

The front panel is a black PCB on which sit the LEDs that form the binary display, and its back holds an ATMega328P microcontroller and DS3231 real-time clock. A smart desktop case is 3D-printed, and while the clock is USB-powered it features a CR2032 coin cell as a backup to hold the time while the USB is disconnected.

Unexpectedly he’s used a mini USB socket rather than the expected micro USB, but the rest of the clock is one we’d probably all have on our desks given the chance. We’d even go so far as to say we’d have this one as a kit if it were available.

Of course, regular readers will notice that this isn’t the only high-standard BCD timepiece you’ll have seen recently, though the other one was a wristwatch.

An Abstract Kind of Clock: The Chinese Remainder Clock

Hackaday likes clocks, a lot. Speaking personally, from my desk I can count at least eight clocks, of which seven are working. There’s normal quartz movement analog clocks, fun automatic wristwatches, run-of-the-mill digital clocks, a calculator watch, and a very special and very broken Darth Vader digital clock/radio combo that will get fixed one day — most likely. Every clock is great, and one of life’s great struggles is to see how many you can amass before you die. The more unique the clock is, the better, and nothing (so far) tops [Antonella Perucca]’s Chinese Remainder Clock.

Continue reading “An Abstract Kind of Clock: The Chinese Remainder Clock”

How To Run a Clock for a Century

What’s going to keep a clock running for a century, unattended? Well, whatever’s running it will have to sip power, and it’s going to need a power source that will last a long time. [Jan Waclawek] is looking into solar power for daytime, and capacitors for nighttime, to keep his clock running for a hundred years.

This project carries on from [Jan]’s previous project which looked at what kind of power source could power the gadgets around his house for a century without needing intervention – ie., no batteries to replace, no winding etc. [Jan] whittled his choices down to a combination of solar power and polypropylene film capacitors. Once the power had been sorted, a clock was chosen in order to test the power supply. The power consumption for a clock will be low during the night – it would only need a RTC circuit keeping track of the time – so a few low-leakage capacitors can be used. When daylight returns or a light is switched on, the solar circuit would power the clock’s display.

At the moment, [Jan] has a proof of concept circuit working, using the ultra-low-power microcontroller on a STM32L476 DISCOVERY board and a few 10 μF 0805 size capacitors, when fully charged by the solar panel, the clock’s display lasts for about two minutes.

Take a look at [Jan]’s project for more details, and check out his previous project where he narrowed down the components for a hundred-year power supply. [Jan]’s prototype can be seen in action after the break. Also take a look at this master clock that signals slave clocks and runs for a year on a single AA battery.

Continue reading “How To Run a Clock for a Century”