Designing Compact Gasoline Generator Prototype For Drone Use

Lithium batteries and brushless motors helped make multirotor drones possible, but batteries only last so long. Liquid fuels have far greater energy densities, but have not  been widely applied in these roles. [Tech Ingredients] has been experimenting with a compact gasoline-fueled generator, with the aim to extend drone flight times well beyond what is currently possible with batteries (Youtube link, embedded below).

The build began with a single-cylinder, four stroke engine. However, torque spikes and vibration made things difficult. After some iteration, the design settled on employing two single-cylinder two stroke engines, fitted with a timing belt to keep them 180 degrees out of phase. In combination with a pair of balanced flywheels, this keeps vibration to a minimum. Brushless motors are used as generators, combined with rectifier diodes and capacitors to smooth the voltage output. The generator is intended to be used in parallel with a lithium battery pack in order to ensure the drone always has power available, even in the event of a temporary malfunction.

This is a build with plenty of promise, and we can’t wait to see what kind of flight time can be achieved once the system is finished and flight ready. We’ve seen others experimenting with hybrid drones, too.

Continue reading “Designing Compact Gasoline Generator Prototype For Drone Use”

Hybrid Drones Could Have Massively Extended Flight Times

Multirotor drones truly took off with the availability of lithium polymer batteries, brushless motors, and cheap IMUs. Their performance continues to improve, but their flight time remains relatively short due to the limits of battery technology. [Nicolai Valenti] aims to solve the problem by developing a hybrid generator for drones.

The basic concept consists of a small gasoline engine, connected to a brushless motor employed as a generator. The electricity generated is used to run the main flight motors of the multirotor drone. The high energy density of gasoline helps to offset the added weight of the generator set, and [Nicolai] is aiming to reach a goal of two hours of flight time.

There are many engineering problems to overcome. Engine starting, vibration and rectification are all significant challenges, but [Nicolai] is tackling them and has already commenced flight testing. Experiments are ongoing with 500 W, 1,000 W, and 2,000 W designs, and work is ongoing to optimise the engine and electronics package.

It’s a project that holds the potential to massively expand the range of operation for medium to large multirotors, and should unlock certain capabilities that have thus far been limited by short battery runtimes. Gasoline powered drones aren’t a new idea, but we’ve seen precious little in the hybrid space. We look forward to seeiing how this technology develops. Video after the break.

Continue reading “Hybrid Drones Could Have Massively Extended Flight Times”