Typhoon-proof Wind Turbine

While wind energy is rapidly increasing its market share across the world, wind turbines are not able to be constructed everywhere that they might be needed. A perfect example of this is Japan, where a traditional wind turbine would get damaged by typhoons. After the Fukushima disaster, though, one Japanese engineer committed himself to building a turbine specifically for Japan that can operate just fine within hurricane-force winds. (YouTube, embedded below.)

The “typhoon turbine” as it is known works via the Magnus effect, where a spinning object directs air around it faster on one side than on the other. This turbine uses three Magnus effect-driven cylinders with a blade on each one, which allows the turbine to harvest energy no matter how high the wind speeds are. The problem with hurricanes and typhoons isn’t just the wind, but also what the wind blows around. While there is no mention of its impact resistance it certainly looks like it has been built as robustly as possible.

Hopefully this turbine is able to catch on in Japan so they can reduce their reliance on other types of energy. Wind energy has been getting incredibly popular lately, including among hikers who carry a portable wind generator, and even among people with just a few pieces of scrap material.

Continue reading “Typhoon-proof Wind Turbine”

Power Through a Hurricane

When living in an area that is prone to natural disasters, it’s helpful to keep something on hand for backup power. While a large number of people chose to use generators, they are often unreliable (or poorly maintained), noisy, produce dangerous carbon monoxide, or run on a fuel supply that might not be available indefinitely. For truly reliable backup power, [Jay] has turned to a battery bank to ride through multi-day power outages.

While the setup doesn’t run his whole house, it isn’t intended to. One of the most critical things to power is the refrigerator, so this build focuses on keeping all of his food properly stored through the power outage. During the days following Hurricane Irma, the system could run the refrigerator for 10-11 hours, and the thermal insulation could keep everything cold or frozen overnight. Rather than using solar panels to charge the batteries, the system instead gets energy from the massive battery of his electric vehicle. [Jay] was out of power for 64 hours, and this system worked for him (and at a better cost) than a generator would have.

With the impact of major storms on many areas this year, we’ve been seeing a lot of interesting ways that people deal with living in areas impacted by these disasters. Besides riding through power outages, we’ve also seen the AARL step in to help, and also taken a look at how robust building codes in these areas help mitigate property damage in the first place.


Reviving a $25 Generator

[Jennies Garage] found a used and abused inverter based generator in the clearance section of his local home improvement store. The generator had been returned on a warranty claim and was deemed uneconomical to fix. Originally $799, [Jennies Garage] picked it up for just $25. He documented his quest to get the device running with a trio of videos.

The generator had spark, but didn’t want to fire. The only obvious problem was the fact that the machine had been overfilled with oil. There was little or no compression, but that is not uncommon with modern small engines – many of them have a compression release mechanism which makes them easier to start.

With all the obvious problems eliminated, the only thing left to do was tear into the engine and figure out what was wrong. Sure enough, it was a compression issue. The overfull oil condition had forced engine oil up around the piston rings, causing them to stick, and snapping one of the rings. The cylinder bore was still in good shape though, so all the engine needed was a new set of rings.

That’s when the problems started. At first, the manufacturer couldn’t find the rings in their computer system. Then they found them but the rings would take two weeks to ship. [Jennies Garage] isn’t the patient type though. He looked up the piston manufacturer in China. They would be happy to ship him complete pistons – but the minimum order quantity was 5000. Then he started cross-referencing pistons from other engines and found a close match from a 1960’s era 90cc motorcycle. Ironically, it’s easier to obtain piston rings for an old motorcycle than it is to find them for a late model generator.

The Honda rings weren’t perfect – the two compression rings needed to be ground down about 1/2 a millimeter. The oil ring was a bit too thick, but thankfully the original oil ring was still in good shape.

Once the frankenpiston was assembled, it was time to put the repair to the test. [Jennies Garage] reassembled the generator, guessing at the torque specs he didn’t have. The surgery was a complete success. The generator ran perfectly, and lit up the night at the [Jennies Garage] cabin.

If you’re low on gas, no problem. Did you know you can run a generator on soda? Want to keep an eye on your remote generator? Check out this generator monitor project.

Continue reading “Reviving a $25 Generator”

Battery Management Module Hacked for Lithium-Iron Battery Bank

In a departure from his usual repair and tear down fare, [Kerry Wong] has set out on a long-term project — building a whole-house battery bank. From the first look at the project, this will be one to watch.

To be fair, [Kerry] gave us a tease at this project a few months back with his DIY spot welder for battery tabs. Since then, he appears to have made a few crucial design decisions, not least of which is battery chemistry. Most battery banks designed for an inverter with enough power to run household appliances rely on lead-acid batteries, although lithium-ion has certainly made some inroads. [Kerry] is looking to run a fairly small 1000-watt inverter, and his analysis led him to lithium-iron cells. The video below shows what happens when an eBay pack of 80 32650 LiFePo4 cells meets his spot welder. But then the problem becomes one of sourcing a battery management system that’s up to the charge and discharge specs of his 4s battery pack. We won’t spoil the surprise for you, but suffice it to say that [Kerry] really lucked out that only minimal modifications were needed for his $9 off-the-shelf BMS module.

We’re looking forward to seeing where this build goes, not least because we’d like to build something similar too. For a more traditional AGM-based battery bank, check out this nicely-engineered solar-charged system.

Continue reading “Battery Management Module Hacked for Lithium-Iron Battery Bank”

The Most Straightforward Wind Turbine

We can all use a little more green energy in our lives at home. So when [ahmedebeed555] — a fan of wind power — ran into durability troubles with his previous home-built turbine, he revised it to be simpler than ever to build.

Outside of the DC generator motor, the rest of the turbine is made from recycled parts: a sponge mop sans sponge, a piece from an old CD drive case acting as a rudder, the blades from a scrapped fan, and a plastic bottle to protect the motor from the elements. Attach the fan to the motor and form the plastic bottle around the motor using — what else? — a soldering iron. Don’t forget a respirator for this step, folks.

Continue reading “The Most Straightforward Wind Turbine”

DC Motor Whirligig Generates Power

Everyone knows that if you spin the shaft of a DC motor, it will generate power. [Vapsvus] has found a novel way to do this with no direct mechanical connection to the shaft. He simply taped a loop of string around to the motor can. This effectively turns the motor into a whirligig. Flip the motor to give the string a few twists, then pull on the two loops. The string unwinds and then winds back up, just like the toy we all grew up with.

The interesting thing is that the motor generates usable power when being spun like this. [Vapsvus] connected two LEDs to the motor’s leads to show what’s happening. The white LED glows when current travels from positive to negative, and the red LED glows when current travels from negative to positive.

What’s going on under the hood is all about momentum. As the motor can starts to spin, the heavy iron rotor remains still. Power is generated. Eventually, friction and torque from back EMF cause the rotor to spin as well. By the time the rotor is spinning, the motor can is already reversing direction.This generates even more power with current traveling in reverse.

Sure, this isn’t exactly practical, but we’d love to see how far it could be taken. Add a super capacitor, and we bet it would be more efficient than the magnetic shake lights which were popular a few years back.

Whirligigs are usefully little devices. Not only do they keep children entertained, you can use them as centrifuges.

Continue reading “DC Motor Whirligig Generates Power”

Ethanol-Powered Arduinos

Following the time-honored YouTube tradition of ordering cheap stuff online and playing with it while the camera runs, [Monta Elkins] bought a Stirling engine that drives a DC motor used as a generator. How much electrical juice can this thing provide, running on just denatured alcohol? (Will it blend?)

The answer is probably not really a spoiler: it generates enough to run “Blink.ino” on a stock Arduino, at least when powered directly through the 5 V rail. [Monta] recorded an open-circuit voltage of around 5 V, and a short-circuit current of around 100 mA at a measured few hundred millivolts. While he didn’t log enough of the points in-between to make a real power curve, we’re guessing the generator might be a better match for 3.3 V electronics. The real question is whether or not it can handle the peaky demands of an ESP8266. Serious questions, indeed!

The video is a tad long, but it’s more than made up for by the sight of an open flame vibro-botting itself across his desk while [Monta] is trying to cool the cold side down with a melting ice cube. Which got us thinking, naturally. If you just had two of the Stirling enginesContinue reading “Ethanol-Powered Arduinos”