Retrotechtacular: Gone Fission

This week’s film begins as abruptly as the Atomic Age itself, though it wasn’t produced by General Electric until 1952. No time is wasted in getting to the point of the thing, which is to explain the frightening force of nuclear physics clearly and simply through friendly animations.

[Dr. Atom] from the Bohr Modeling Agency describes what’s going on in his head—the elementary physics of protons, neutrons, and electrons. He explains that atoms can be categorized into families, with uranium weighing in as the heaviest element at the time. While most atoms are stable, some, like radium, are radioactive. This evidently means it stays up all night doing the Charleston and throwing off neutrons and protons in the process of jumping between atomic families. [Dr. Atom] calls this behavior natural transmutation.

Artificial transmutation became a thing in the 1930s after scientists converted nitrogen into oxygen. After a couple of celebratory beers, they decided to fire a neutron at a uranium nucleus just to see what happened. The result is known as nuclear fission. This experiment revealed more about the binding force present in nuclei and the chain reaction of atomic explosions that takes place. It seemed only natural to weaponize this technology. But under the right conditions, a reactor pile made from graphite blocks interspersed with U-235 and -238 rods is a powerful and effective source of energy. Furthermore, radioactive isotopes have advanced the fields of agriculture, industry, medicine, and biochemistry.

Continue reading “Retrotechtacular: Gone Fission”

Fail Of The Week: This Inanimate Titanium Rod

You saw [Chris] cast aluminium on the cheap using Kinetic Sand a few weeks ago, didn’t you? He recently got his meaty hands on some titanium through the magic of modern transactional methods and was bowled over by its strength, hardness, and poor heat transfer.

He thought he would cast it into a nice, strong bottle opener. As you can probably guess, that didn’t go so well. First off, it wasn’t easy to saw through the thin rod. Once he did get it split in twain, it was surprisingly cool to the touch except at the tip. This is nasty foreshadowing, no?

[Chris] takes a moment to help us absorb the gravity of what he’s about to do, which of course is to send several hundred amps through that poor rod using a DC arc welder. Special precautions are necessary due to the reaction between oxygen and heated titanium. His trusty graphite crucible is grounded to the bottom of a big aluminium tub, and a cozy blanket of argon from a TIG welder will shield the titanium from burnination.

Well . . . the titanium didn’t melt. Furthermore, the crucible is toast. On the up side, vise-enabled cross-sectional examination of the crucible proved that there was still gold in them there walls.

Do you have any (constructive, on-topic) suggestions for [Chris]? Let him know below.

Continue reading “Fail Of The Week: This Inanimate Titanium Rod”