Once you move away from the usual software defined radio (SDR) dongles, you have only a few choices unless you want to drop some serious cash. One common hobby-grade SDR is the KiwiSDR. This popular unit runs Linux and can receive up to 30 MHz. The platform uses a dedicated A/D converter, an FPGA, and BeagleBone computer. Success of course breeds imitators, and especially when you have an open source design like the Kiwi, you are going to find similar devices with possibly different end goals. That’s how the RaspberrySDR came to be. This is a very similar unit to the KiwiSDR but it uses a Raspberry Pi, along with a handful of other differences. What’s different? [KA7OEI] tells us in a recent blog post.
Other than the obvious difference of the computer and all that it entails, the RaspberrySDR has a higher speed A/D (125 MHz vs 66 MHz) and 16-bits of resolution instead of the Kiwi’s 14 bits. This combines to give the Raspberry a wider receive range (up to 60 MHz) and — in theory — better performance in terms of dynamic range and distortion.
Software defined radio or SDR has changed the radio landscape forever. But to use one you need to buy some kind of hardware right? Maybe not. As [Tech Minds] shows in a recent video there are plenty of SDRs publically available on the Internet. We know that isn’t news, but the video does cover several different methods of finding and using SDR receivers including many that run totally in the browser.
Of course, there are a lot of reasons you might want to borrow an alien radio receiver, even if you have your own hardware. Maybe you don’t have a great antenna or maybe you want to hear a signal — maybe even your own — from a different location.
Many of us have had cause to add GPS to a project, whether it’s because we need an accurate timebase or just want to know where the bloody thing is. Normally, this consists of plugging in a cheap module and making sure the antenna has a good view of the sky. [Mike] wanted to dig deeper, however, and figure out just what goes into decoding a GPS signal and calculating a location fix.
[Mike]’s investigation combined several avenues of investigation. In terms of decoding live radio signals, he selected a KiwiSDR software defined radio. Combined with a Digilent Nexys 2 FPGA, it was now possible to get live data off the air and into the PC quickly for decoding. In concert with this, [Mike] used a sample of raw GPS data captured in Nottingham, UK in order to test his code. After much experimentation, [Mike] was able to get the data decoded with 700 lines of C code. Decoding three minutes worth of data took all night, but further development allowed things to be sped up over 200 times. For the curious, the code is up on Github to convert raw ADC samples into actual location fixes.
Armed with the wealth of resources online and the right hardware, [Mike] was sucessfully able to achieve his goal, and figure out just precisely where his house is, to boot. As a bonus, the whole project was inspired by a similar project posted in these very pages back in 2013! If you’re working on your own satellite-based projects, be sure to drop us a line.
Radio direction finding is one of those things that most Hackaday readers are likely to be familiar with at least on a conceptual level, but probably without much first-hand experience. After all it’s not everyday that you need to track down a rogue signal, let alone have access to the infrastructure necessary to triangulate its position. But thanks to the wonders of the Internet, at least the latter excuse is now a bit less valid.
The RTL-SDR Blog has run a very interesting article wherein they describe how the global network of Internet-connected KiwiSDR radios can be used for worldwide radio direction finding. If you’ve got a target in mind, and the time to fiddle around with the web-based SDR user interface, you now have access to the kind of technology that’s usually reserved for world superpowers. Indeed, the blog post claims this is the first time such capability has been put in the hands of the unwashed masses. Let’s try not to mess this up.
To start with, you should have a rough idea of where the signal is originating from. It doesn’t have to be exact, but you want to at least know which country to look in. Then you pick one of the nearby public KiwiSDR stations and tune the frequency you’re after. Repeat the process for a few more stations. In theory the more stations you have the better, but technically three should be enough to get you pretty close.
With your receiving stations selected, the system will then start Time Difference of Arrival (TDoA) sampling. This technique compares the time the signal arrives at each station in relation to the KiwiSDR’s GPS synchronized clock. With enough of this data from multiple stations, it can estimate the origin of the signal based on how long it takes to reach different parts of the globe.
It’s not perfect, but it’s pretty impressive for a community run project. The blog post goes on to give examples of both known and unknown signals they were able to triangulate with surprising accuracy: from the US Navy’s VLF submarine transmitter inĀ Seattle, Washington to the mysterious “Buzzer” number station hidden somewhere in Russia.