Crypto Photography And Custom Firmware

Imagine a camera that took encrypted pictures. If your camera is stolen, the only thing on the memory card would be random data that can only be unlocked with a key. If you hire a photographer, those images cannot be copied without the key. At the very least, it’s an interesting idea made impressive because this actually exists.

[Doug] recently got his hands on a Samsung NX300, a nice camera for the price that conveniently runs Linux and is kinda open-sourced by Samsung. With special firmware, [Doug] created public/private key encryption for this camera, giving only the person with the private key the ability to unlock the pictures taken with this camera.

[Doug] started his build by looking at the firmware for this camera, figuring out how to take everything apart and put it back together. With a few modifications that included encryption for all images taken with this camera, [Doug] repackaged the firmware and upgraded the camera.

The encryption firmware is available on the site, but considering how easily [Doug] was able to make this hack happen, and a great walkthrough of how to actually do it raises some interesting possibilities. The NX300 is a pretty nice camera that’s a little bit above the Canon PowerShot cameras supported by CHDK. It also runs Linux, so if you’re looking for something cool to do with a nice camera, [Doug] has a very good resource.

Samsung NX300 Gets Rooted

sammy

[Ge0rg] got himself a fancy new Samsung NX300 mirrorless camera. Many of us would just take some pretty pictures, but not [Ge0rg], he wanted to see what made his camera tick. Instead of busting out the screwdrivers, he started by testing his camera’s security features.

The NX300 is sold as a “smart camera” with NFC and WiFi connectivity. The NFC connectivity turns out to be just an NXP NTAG203 tag embedded somewhere in the camera. This is similar to the NFC tags we gave away at The Gathering in LA. The tag is designed to launch an android app on a well equipped smartphone. The tag can be write-locked, but Samsung didn’t set the lock bit. This means you can reprogram and permanently lock the tag as a link to your favorite website.

[Ge0rg] moved on to the main event, the NX300’s WiFi interface. A port scan revealed the camera is running an unprotected X server and Enlightenment. Let that sink in for a second. The open X server means that an attacker can spoof keystrokes, push images, and point applications to the camera’s screen.

In a second blog post, [Ge0rg] tackled attaining root access on the camera. Based on the information he had already uncovered, [Ge0rg] knew the camera was running Linux. Visiting Samsung’s open source software center to download the open source portions of the NX300 confirmed that. After quite a bit of digging and several red herrings, [Ge0rg] found what he was looking for. The camera would always attempt to run an autoexec.sh from the SD Card’s root folder at boot. [Ge0rg] gave the camera the script it was looking for, and populated it with commands to run BusyBox’s telnet daemon.  That’s all it took – root shell access was his.

 

[Image via Wikimedia Commons/Danrok]