Using An Old Smartphone In Place Of A Raspberry Pi

The Raspberry Pi was a fairly revolutionary computing device when it came on the scene around a decade ago. Enough processing power to run a full Linux desktop and plenty of GPIO meant almost certain success. In the past year, though, they’ve run into some issues with their chip supplier and it’s been difficult to find new Pis, which has led to some looking for alternatives to these handy devices. [David] was hoping to build a music streaming server and built it on an old smartphone instead of the ubiquitous single-board computer.

Most smartphones are single-board computers though, and at least the Android devices are fully capable of running Linux just like the Pi. The only problem tends to be getting around the carrier or manufacturer restrictions like a locked bootloader or lack of root access. For [David]’s first try getting this to work, he tried to install Navidrome on a Samsung phone but had difficulties with the lack of memory and had to build the software somewhere else and then load it on the phone. It did work, but the stock operating system kept killing the process for consuming too much memory.

Without root access, [David] decided to try LineageOS, a version of Android which, among other benefits, is typically much more configurable than the stock version of Android that is shipped with smartphones. This allowed him to disable or uninstall anything not needed for his music server to free up enough memory. After some issues with transcoding the actual music files he planned on streaming, his music server was successfully up and running on a phone that would have otherwise been relegated to the junk drawer. The specific steps he took to get this working can be found on his GitHub page as well.

[David] also mentioned looking at PostmarketOS for this job which is certainly a viable option for some, but the Linux distribution for phones is only supported on a few devices. Another viable alternative for a project like this if no Raspberry Pis are available might be any of a number of Pine64 devices that might also be sitting around gathering dust, like the versatile Linux-based Pinephone.

A Compact Camera Running Linux? What’s Not To Like!

One of the devices swallowed up by the smartphone for the average person is the handheld camera, to the extent that the youngsters are reported to be now rediscovering 20-year-old digital cameras for their retro cool factor. Cameras aren’t completely dead though, as a mirrorless compact or a DSLR should still blow the socks off a phone in competent hands. They’ve been around long enough to be plentiful secondhand, which makes [Georg Lukas]’ look at a ten-year-old range of models from Samsung worth a second look. Why has a deep dive into old cameras caught our eye? These cameras run Linux, in the form of Samsung’s Tizen distribution.

His interest in the range comes from owning one since 2014, and it’s in his earlier series of posts on hacking that camera that we find some of the potential it offers. Aside from the amusement that it runs an unprotected X server, getting to a root shell is fairly straightforward as we covered at the time, and it turns out to be a very hackable device.

Cameras follow a Gartner hype cycle-like curve in the popularity stakes, so for example the must-have bridge cameras and compact cameras of the late-2000s are now second-hand-store bargains. Given that mirrorless cameras such as the Samsung are now fairly long in the tooth, it’s likely that they too will fall into a pit of affordability before too long. One to look out for, perhaps.

An Old Netbook Spills Its Secrets

For a brief moment in the late ’00s, netbooks dominated the low-cost mobile computing market. These were small, low-cost, low-power laptops, some tiny enough to only have a seven-inch display, and usually with extremely limiting hardware even for the time. There aren’t very many reasons to own a machine of this era today, since even the cheapest of tablets or Chromebooks are typically far more capable than the Atom-based devices from over a decade ago. There is one set of these netbooks from that time with a secret up its sleeve, though: Phoenix Hyperspace.

Hyperspace was envisioned as a way for these slow, low-power computers to instantly boot or switch between operating systems. [cathoderaydude] wanted to figure out what made this piece of software tick, so he grabbed one of the only netbooks that it was ever installed on, a Samsung N210. The machine has both Windows 7 and a custom Linux distribution installed on it, and with Hyperspace it’s possible to switch almost seamlessly between them in about six seconds; effectively instantly for the time. Continue reading “An Old Netbook Spills Its Secrets”

AI And Savvy Marketing Create Dubious Moon Photos

Taking a high-resolution photo of the moon is a surprisingly difficult task. Not only is a long enough lens required, but the camera typically needs to be mounted on a tracking system of some kind, as the moon moves too fast for the long exposure times needed. That’s why plenty were skeptical of Samsung’s claims that their latest smart phone cameras could actually photograph this celestial body with any degree of detail. It turns out that this skepticism might be warranted.

Samsung’s marketing department is claiming that this phone is using artificial intelligence to improve photos, which should quickly raise a red flag for anyone technically minded. [ibreakphotos] wanted to put this to the test rather than speculate, so a high-resolution image of the moon was modified in such a way that most of the fine detail of the image was lost. Displaying this image on a monitor, standing across the room, and using the smartphone in question reveals details in the image that can’t possibly be there.

The image that accompanies this post shows the two images side-by-side for those skeptical of these claims, but from what we can tell it looks like this is essentially an AI system copy-pasting the moon into images it thinks are of the moon itself. The AI also seems to need something more moon-like than a ping pong ball to trigger the detail overlay too, as other tests appear to debunk a more simplified overlay theory. It seems like using this system, though, is doing about the same thing that this AI camera does to take pictures of various common objects.

A Single-Watt Hydroponic Lighting System

Hydroponic systems are an increasingly popular way to grow plants indoors using a minimum of resources. Even some commercial farming operations are coming online using hydroponic growing techniques, as these methods consume much less water, land area, and other resources than traditional agricultural methods. The downside is that the required lighting systems often take an incredible amount of energy. That’s why [ColdDayApril] set up a challenge to grow a plant hydroponically using no more than a single watt.

The system is set up to grow a single pepper plant in what is known as a deep-water culture, where the plant is suspended in a nutrient solution which has everything it needs to grow. The lightning system is based around the Samsung LM301B which comes close to the physical limits for converting electricity into white light and can manage around 220 lumens. A special power supply is needed for these low-power diodes, and the light is efficiently directed towards the plant using a purpose-built reflective housing. By placing this assembly very close to the plant and adjusting it as it grows, [ColdDayApril] was able to take the pepper plant from seed to flowering in 92 days.

It’s worth noting that the rest of the system uses a little bit of energy too. A two watt fan helps circulate some air in the hydroponic enclosure, and deep-water systems usually require an air pump to oxygenate the water which uses another two watts. This is still an impressive accomplishment as most hobbyist builds use lighting systems rated in the hundreds of watts and use orders of magnitude more energy. But, if you’re willing to add some fish into the system you can mitigate some of the energy requirements needed for managing the water system even further.

Samsung Bricks Smart TVs

Earlier this Fall, a Samsung warehouse in South Africa was robbed and the thieves got away with a quantity of smart televisions. Samsung proceeded to implement a little-known feature called “TV Block” which is installed on all of their TV products. The serial numbers of the stolen TV sets are flagged in their servers, and if one of these sets tries to connect the internet in the future, it will recognize that it is stolen and proceed to brick itself, disabling all television functionality.

So while this real-life scenario makes sense, it is a bit alarming to realize the implication of such a feature — the manufacturer can reach into your TV and disable it from afar. One can assume that Samsung won’t abuse this capability, because acting otherwise would harm their reputation. In a press release, Samsung announced that any consumers whose sets were incorrectly bricked can have their sets un-bricked after demonstrating proper ownership.

Despite such good intentions, the mere existence of such a feature is worrisome. What someone hacks the system and begins bricking TVs all over the world willy-nilly? If you are concerned about this possibility, one option of course is to never connect your TV set to the internet. But in that case, it might be better to just buy a “dumb” television set instead.

Anti-theft immobilizers are not new — one system was patented over 100 years ago to thwart car thieves. Car stereo systems have also long featured technology that renders them unusable when stolen. Although this robbery brought Samsung’s “TV Block” to consumers’ attention, we wonder if other manufacturers have similar anti-theft systems which aren’t well publicized. If you know of any, please share in the comments below.

Samsung Shuttering Original SmartThings Hubs

Samsung is causing much angst among its SmartThings customers by shutting down support for its original SmartThings home automation hub as of the end of June. These are network-connected home automation routers providing Zigbee and Z-Wave connectivity to your sensors and actuators. It’s not entirely unreasonable for manufacturers to replace aging hardware with new models. But in this case the original hubs, otherwise fully functional and up to the task, have intentionally been bricked.

Users were offered a chance to upgrade to a newer version of the hub at a discount. But the hardware isn’t being made by Samsung anymore, after they redirected their SmartThings group to focus entirely on software. With this new dedication to software, you’d be forgiven for thinking the team implemented a seamless transition plan for its loyal user base — customers who supported and built up a thriving community since the young Colorado-based SmartThings company bootstrapped itself by a successful Kickstarter campaign in 2012. Instead, Samsung seems to leave many of those users in the lurch.

There is no upgrade path for switching to a new hub, meaning that the user has to manually reconnect each sensor in the house which often involves a cryptic sequence of button presses and flashing lights (the modern equivalent of setting the time on your VCR). Soon after you re-pair all your devices, you will discover that the level of software customization and tools that you’ve relied upon for home automation has, or is about to, disappear. They’ve replaced the original SmartThings app with a new in-house app, which by all accounts significantly dumbs down the features and isn’t being well-received by the community. Another very popular tool called Groovy IDE, which allowed users to add support for third-party devices and complex automation tasks, is about to be discontinued, as well.

Continue reading “Samsung Shuttering Original SmartThings Hubs”