Sensor Array Tries To Outdo The Other Guys

The team over at the Louisville Hackerspace LVL1 is not going to be outdone when it comes to collecting environmental data. They put together this Frankenstein of sensor boards that lets you collect a heap of data showing what is going on around it.

At the center-left a small Arduino clone is responsible for collecting the data. Data storage is not talked about on their write-up, but if that’s an ATmega328 chip you should be able to work out an easy way to store data on the 1k of internal EEPROM. If that’s not enough, there is an I2C bus included on the board making it easy to add a compatible EEPROM.

The sensor on the bottom left should look familiar. It’s a DHT11 temperature and humidity sensor we’ve seen popping up in projects lately. But wait, there’s also a TMP102 temperature sensor; but that’s not the end of it. A BMP085 pressure sensor also includes a third temperature sensing option. Want to see when the lights go on in the room? There’s a CdS sensor and a TSL230R Lux sensor for that. An op-amp circuit can measure the sound level in the room via one of the Arduino’s ADC pins. And finally, an RTC board is used for time stamping the data.

Obviously this is overkill, and we’re sure it’s meant as a test platform for various sensors. All of them have been mounted on the protoboard and wired up using the point-to-point soldering method.

Monitor UV Exposure With Your Sunglasses

Tired of those awful sunburns? [Nikko Knappe’s] UV sensing glasses will warn you before you become crisp and red as a lobster. The bump added to the bridge support hides a TSL230R light frequency sensor. The device automatically switches on when the arms are unfolded and starts tracking cumulative exposure. If it detects a rising UV level, or you are about to burn based on skin type, an LED inside one arm of the frames will flash to inform you.

This has some potential if you think David Brin’s Earth outlines how climate change is really going to play out. Either way it’s still fun and we give bonus points to [Nikko] for disguising the lilypad that controls this as a flowery hair-pin.

Pulse Oximeter

[youtube=http://www.youtube.com/watch?v=GdN5IRVJOXI]

[Mike] is building his own Pulse Oximeter which uses light to measure the oxygen saturation in blood. One collateral benefit of this measurement is that pulse rate can be calculated from the same data. The parts used for the detector include a red LED, infrared LED, and a TSL230R light intensity measuring chip. As explained in the video above, each LED is shined through the tip of your finger and onto the light sensor. The IR LED is used as a baseline and compared to the red LED, which has some of its intensity absorbed by the red blood in your finger. This is a pretty approachable biometric concept so you may want to start here before moving on to more involved biometric interfaces.

[Thanks Russ]