Visualizing RF Standing Waves

Standing waves are one of those topics that lots of people have a working knowledge of, but few seem to really grasp. A Ham radio operator will tell you all about the standing wave ratio (SWR) of his antenna, and he may even have a meter in the shack to measure it. He’ll know that a 1.1 to 1 SWR is a good thing, but 2 to 1 is not so good. Ask him to explain exactly what a standing wave is, though, and chances are good that hands will be waved. But [Allen], a Ham also known as [W2AEW], has just released an excellent video explaining standing waves by measuring signals along an open transmission line.

[Source: Wikipedia]
[Source: Wikipedia]
To really understand standing waves, you’ve got to remember two things. First, waves of any kind will tend to be at least partially reflected when they experience a change in the impedance of the transmission medium. The classic example is an open circuit or short at the end of an RF transmission line, which will perfectly reflect an incoming RF signal back to its source. Second, waves that travel in the same medium overlap each other and their peaks and troughs can be summed. If two waves peak together, they reinforce each other; if a peak and a trough line up, they cancel each other out.

Continue reading “Visualizing RF Standing Waves”

Automatic Antenna Tuner

Automatic Antenna Tuner

To get the best power transfer into an antenna, tuning is required. This process uses a load to match the transmission line to the antenna, which controls the standing wave ratio (SWR).

[k3ng] built his own automatic antenna tuner. First, it measures the SWR of the line by using a tandem match coupler. This device allows the forward and reflected signals on the line to be extracted. They are buffered and fed into an Arduino for sampling. Using this data, the device can calculate the SWR. The RF signal is also divided and sampled to measure frequency.

To automate tuning, an Arduino switches a bank of capacitors and inductors in and out of the circuit. By varying the load, it can find the ideal matching for the given antenna and frequency. Once it does, the settings are stored in EEPROM so that they can be recalled later.

After the break, check out a video of the tuner clicking its relays and matching a load.

Continue reading “Automatic Antenna Tuner”