Flapping Wings And The Science Of How Bees Can Fly

Jerry Seinfeld launched his career with Bee Movie, an insect-themed animated feature that took the world by storm in 2007. It posed the quandary – that supposedly, according to all known laws of aviation, bees should not be able to fly. Despite this, the bee flies anyway, because bees don’t care what humans think is impossible.

The quote isn’t easily attributed to anyone in particular, but is a cautionary tale about making the wrong assumptions in an engineering context. Yes, if you model a bee using the same maths as an airliner, of course you’ll find that it shouldn’t be able to fly. Its tiny wings can’t possibly generate enough lift to get its body off the ground. But that’s because the assumption is an erroneous one – because bees don’t fly in the same way planes do. Bees flap their wings. But that’s just the beginning. The truth is altogether more complex and interesting! Continue reading “Flapping Wings And The Science Of How Bees Can Fly”

Cleaning Up The Yard With AI — Avian Intelligence

Despite epithets like “bird-brain,” our feathered friends are actually pretty smart. Being able to maneuver in three dimensions at high speed must have something to do with it, and the cognitive abilities of birds are well-documented and still being researched. So it naturally makes sense to harness avian brainpower to keep one’s yard clean, right?

For the record, the magpies that [Hans] is training are very intelligent and strikingly beautiful birds who delight in swooping down to harass people, and who will gladly steal food from other birds and then poop on it and fly away. So they’re jerks, but that doesn’t mean they can’t be useful jerks. The goal with his BirdBox system is to use classic operant conditioning, where a desired voluntary behavior is reinforced by a reward. In this case, the reward is a treat dispensed by a 3D-printed vibratory dispenser when the bird collects a bottlecap from the yard and deposits it in the proper slot. The video below shows the birds doing exactly what they’re supposed to do.

[Hans] tells us that the trick is getting the birds to accept the BirdBox and to have them integrate it into their “patrol schematic” of their territory. Once that’s done, it’s a simpler matter to have them associate the bottlecaps with the reward. The other challenge is making everything bulletproof, or in this case magpie-proof. Did we mention that magpies are jerks?

The possibilities for trading peanuts for yardwork are endless; [Hans] mentions plans he has for fallen fruit clean-up, and mentions a persistent garden slug problem that the birds might be employed to remediate. If you want to try this, it might be a good idea to brush up on the work of [B.F. Skinner] and his pigeons of war.

Continue reading “Cleaning Up The Yard With AI — Avian Intelligence”

Hackaday Links: May 12, 2019

The future of the musical instrument industry is in tiny, cheap, handheld synthesizers. They’re sold as ‘musical toys’. They bleep and bloop, and that’s about it. Korg may have just released the minimum viable product for this category, and thus the most popular product for this category. On the surface, the Korg Nu:Tekt doesn’t look like much, just a box with three knobs, a speaker, a (crappy) keyboard, and a few buttons. I/O includes MIDI in, Sync in and out, audio in, and headphones out. What’s inside is what counts. There’s a high-powered ARM core (STM32F446, a Cortex-M4 running at 180 MHz) and a ton of RAM. What’s the play here? It’s compatible with the Korg Prologue/Minilogue SDK, so you can put the same sounds from the flagship synthesizer on a tiny box that fits in your pocket. Things are starting to get weird, man. This is a toy, with the same sounds as the ‘pro’ level synth. Let it be known that the synth market is the most interesting segment of consumer electronics right now.

Bird, that ride share scooter startup, is now selling their scooters. It costs thirteen hundred dollars. Alternatively, you can pick some up for cheap at your city’s impound lot. Or for the low, low, price of free.

Razer, the company that makes garish computer peripherals aimed at ‘gamers’ and other people who are sucked deep into the existential turmoil of disempowerment, depression, and playing video games all day, are building a toaster. Gamers aren’t known for eating food that isn’t prepared by their mom, but the Razer consumer community has been clamoring for a professional gaming toaster since it was first teased on April Fool’s Day three years ago. You only eat so many cold Pop Tarts straight out of the box, I guess.

Everyone loves cupcake cars, and this year we’re in for a treat! We’re ringing the bell this weekend with the 6th annual Hackaday x Tindie meetup for the Bay Area Maker Faire. We got a few things going on here. Next Thursday we’ll be greeted with talks by The Only Makers That You Want To Meet. That’s HDDG, the monthly San Francisco meetup happening at the Supplyframe office, and it’s going to be packed to the gills this month. Don’t miss it. Next Saturday, we’re renting a bar close to the Faire. The 6th Annual Hackaday x Tindie MFBA Meetup w/ Kickstarter is usually at an Irish pub in San Mateo, but we’re getting a bigger venue this year. You’ll be able to move around in this venue.

Security Engineering: Inside The Scooter Startups

A year ago, ridesharing scooter startups were gearing up for launch. Workers at Bird, Lime, Skip, and Spin were busy improving their app, retrofitting scooters, and most importantly, figuring out the logistics of distributing thousands of electronic scooters along the sidewalks of the Bay Area. These companies were gearing up for a launch in early summer, but one company — nobody can remember exactly who — decided to launch early. First mover advantage, and all. Overnight, these scooter companies burst into overdrive, chucking scooters out of panel vans onto the sidewalk simply to keep up with the competition.

The thing about San Francisco, and California in general, is that it’s a very direct democracy masquerading as a representative government. Yes, there are city council members and a state legislature, but the will of the people will rule. No one liked tripping over the scooters littering the sidewalks, so the scooters ended up at the bottom of a lake. Or in trees. Or in the trash. In time, city permits were issued, just like a hot dog cart or any other business operating on a public sidewalk, and the piles of electric scooters disappeared. Not before hundreds of scooters were vandalized, that is.

It’s still early in the electric scooter rental startup space, but if there’s one company leading the pack, It’s Bird. they’re getting the most press, the CEO was formerly at Lyft and Uber (which explains the press), and they’ve raised nearly a half Billion dollars in funding (which explains the press). Bird is valued at two Billion dollars, and it’s one of four major ridesharing scooter startups. Pets.com had nothing on this.

Despite how overvalued you think a scooter startup might be, they’re still a business, and they’re ruled by the bottom line. Bird has grown a lot in the past year, and with that comes engineering challenges. The Bird scooters must be more resistant to vandalism. The Bird scooters must be harder to steal. Above all else, they must remain in service longer. This is the teardown of how Bird managed to improve their bottom line and engineer a better scooter.

Continue reading “Security Engineering: Inside The Scooter Startups”

Liberating Birds For A Cheap Electric Scooter

A few months ago, several companies started deploying electric scooters on the sidewalks of cities around the United States. These scooters were standard, off-the-shelf electric scooters made in China, loaded up with battery packs, motors, and a ‘brain box’ that has a GPS unit, a cellular modem, and a few more electronics that turn this dumb electric scooter into something you can ride via an app. Dropping electronic waste on cities around the country was not looked upon kindly by these municipalities, and right now there are hundreds of Bird and Lime scooters in towing yards, just waiting to be auctioned off to the highest bidder.

This is a remarkable opportunity for anyone who can turn a screwdriver and handle a soldering iron. For mere pennies on the dollar you can buy dozens of these scooters, and you can own thousands of dollars in batteries and electronics if you show up to the right auction. [humanbeing21] over on the scootertalk forums is preparing for the Bird apocalypse, and he’s already converted a few of these scooters to be his personal transportation device.

The subject of this conversion are scooters deployed by Bird, which are in actuality Xiaomi MIJIA M365 scooters with a few added electronics to connect to the Internet. The ‘conversion kit’ for a Bird scooter comes directly from China, costs $30, and is apparently a plug-and-play sort of deal. The hardest part is finding a screwdriver with the right security bits, but that again is a problem eBay is more than willing to solve.

Right now, [humanbeing21] is in contact with a towing company that has well over a hundred Bird scooters on their lot, each accruing daily storage fees. Since these scooters only cost about $400 new, we’re probably well past the time when it makes sense for Bird to pay to get them out of storage. This means they’ll probably be heading for an auction where anyone can pick them up — all of them — for a hundred bucks or so.

Right now, scooter hacking is becoming one of the most interesting adventures in modern-day hacking. You’ve got batteries and electronics and motors just sitting there, ready for the taking (and yes, through these auctions you can do this legally). We’re looking at a future filled with 18650-based Powerwalls from discarded electric scooters and quadcopters built around scooter motors filling the skies. This is cyberpunk, and we can’t wait to see the other builds these scooters will become.

Bird Beats Cancer With The Help Of A 3D-Printed Prosthetic

It’s a reasonable certainty that 3D-printing is one day going to be a huge part of medicine. From hip implants to stents that prop open blood vessels to whole organs laid down layer by layer, humans will probably benefit immensely from medical printing. But if they do, the animals will get there first; somebody has to try this stuff out, after all.

An early if an unwilling adopter of 3D-printed medical appliances is [Jary], a 22-year-old Great Pied Hornbill, who recently received a 3D-printed replacement for his casque, the large, mostly hollow protuberance on the front the bird’s skull leading out over the upper beak. There’s no known function for the casque, but it had to be removed since cancer was destroying it and [Jary] wouldn’t have fared well post-surgically without one. Working from CT scans, the veterinary team created a model of the casque as well as a jig to guide the saw during surgery. There’s no word on what filament was used, but we’d guess PLA since it’s biocompatible and available in medical grades. The video below shows some of the surgery; it’s interesting to note that the prosthetic started out natural colored but quickly turned yellow as [Jary] preened with oils from glands near his tail feathers, just like a natural casque would.

Hornbills live to about 40 years old, so [Jary] is just middle-aged. Here’s hoping that he lives a long, happy life in return for being a pioneer in 3D-printing for medical and surgical appliances.

Continue reading “Bird Beats Cancer With The Help Of A 3D-Printed Prosthetic”

High Tech Drone Scarecrows Can Make Airports Safer

If you pay attention to airplane news — or you watched the film Sully — you know planes have problems with birds. Sully was about US Airways flight 1549 which struck a flock of geese and ditched in the Hudson river.  Engineers at Caltech say that was the inspiration for them to develop a control algorithm that enables a single drone scarecrow to herd flocks of birds away from airports.

Airports have tried a lot of things to discourage birds ranging from trained falcons to manually-piloted drones. Apparently, herding birds is harder than you would think. If you fly the drone too far from a flock, it will ignore the threat. If you get too close, the flock will scatter making it both threaten a larger area and harder to control.

Continue reading “High Tech Drone Scarecrows Can Make Airports Safer”