A Year Long Time Lapse Camera

All [val3tra] wanted was an RF-accessible camera. A camera that would take pictures, save them to an SD card, and occasionally send them over an RF link to a computer. This project has grown out of control, and now it has become an open-source camera that’s able to take year-long time-lapse movies.

The build started as a low power camera using an eBay JPEG camera modified for 3.3V. That’s only 640×480, but each frame averages only 48kb – small enough to store a few thousand pictures on a FAT16 formatted SD card. A $4 RF module, an ATMega, and an RTC make up the rest of the build that has a power draw of about 100 Joules per hour. A D-cell has about 60,000 Joules, and a pessimistic estimate of a battery of four in series, two in parallel gives a run time of 200 days.

This build was then improved, bringing the total battery consumption down to about 3.5-4 Joules per frame, or at one frame every 10 minutes, about 24 Joules an hour. That’s impressive, and getting this camera to run longer than a dozen or so months raises some interesting challenges. The self-discharge of the battery must be taken into account, and environmental concerns – especially when leaving this camera to run in a Moscow winter, seen in the video below – are significant.

If you don’t want to go equipment-lite you could seal your DSLR, Pi, and some serious batteries in a weatherproof enclosure.

Continue reading “A Year Long Time Lapse Camera”

Sheet Music to MIDI Converter

Learning to read sheet music is a challenge for new musicians, so a group of Cornell students decided to make a robot do it instead. For their final project, they built a robotic sheet music reader (link warning: this page seems to automatically start a .mov file download when loaded).

As an input, the robot takes a piano roll. This is a long strip of paper with music printed on it, which can easily be fed through the reader. A rotational servo keeps the strip feeding at a constant speed, and passes it through the reader.

The reader is based on a Melexis MLX75306 linear optical array. This IC is a 142 x 1 array of photodiodes, which is designed for fuel quality sensing in cars. In this project, it’s been repurposed as a camera to read the music as it passes by. An array of LEDs illuminates the piano roll, providing a more accurate reading.

The components are connected to an Atmel ATmega1284P, which does all the required control and processing. It creates a MIDI output of the piano roll, which can be connected to any hardware or software synthesizer.