Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

3D Printering: When Resin Printing Gets Smelly

Nowadays, resin printers are highly accessible and can do some great stuff. But between isopropyl alcohol for part rinsing and the fact that some resins have a definite smell to them, ventilation can get important fast. The manufacturers don’t talk much about this part of the resin printing experience, but it’s there nevertheless. So what can be done when smells become a problem?

I recently had to deal with this when I printed several liters of resin worth of parts. That’s a lot of resin, and a lot of alcohol for part washing. Smells — which had never been much of a problem in my work area — suddenly became an issue.

Where Odors Come From

Smells come from two sources: the resin itself, and the isopropyl alcohol used for cleanup and part washing. Continue reading “3D Printering: When Resin Printing Gets Smelly”

Real Engineering Behind Ventilators

Experts on cognition tell us that most people think they know more than they really do. One particular indicator for that is if someone is an expert in one field and they feel like all other fields relate to theirs (everything boils down to math or chemistry or physics, for example). This causes them to be overconfident on things they don’t actually know about. When it became clear that the current virus crisis might lead to a shortage of ventilators, many electronic experts set about to design low-cost easy to replicate ventilators. How hard is it, after all, to squeeze a bag once every few seconds? But it turns out, there are a lot of details you need to know to do it right. [Real Engineering] and [Real Science] joined to create an excellent video that covers a lot of what you need to know. You can see the video below. The video shows a few designs that — while motivated by altruism — would probably do more harm than good if used on real patients.

The video’s creator is a biomedical engineer who worked in the past for Medtronic — a maker of ventilators who, by the way, recently open-sourced one of their designs. They also had [Dr. Rohin Francis], who has a medical YouTube channel, fact check the video. and provide some on-screen background We learned a few new medical terms and found that a high-end ventilator made in one factory gets built at about 225 per week. They think they can increase to 500.

Continue reading “Real Engineering Behind Ventilators”

Reliability Check: Consumer And Research-Grade Wrist-Worn Heart Rate Monitors

Wearables are ubiquitous in today’s society. Such devices have evolved in their capabilities from step counters to devices that measure calories burnt, sleep, and heart rate. It’s pretty common to meet people using a wearable or two to track their fitness goals. However, a big question remains unanswered. How accurate are these wearable devices? Researchers from the Big Ideas Lab evaluated a group of wearables to assess their accuracy in measuring heart rate.

Unlike other studies with similar intentions, the Big Ideas Lab specifically wanted to address whether skin color had an effect on the accuracy of the heart rate measurements, and an FDA-cleared Bittium Faros 180 electrocardiogram was used as the benchmark. Overall, the researchers found that there was no difference in accuracy across skin tones, meaning that the same wearable will measure heart rate on a darker skin-toned individual the same as it would on a lighter skin-toned. Phew!

However, that may be the only good news for those wanting to use their wearable to accurately monitor their heart rate. The researchers found the overall accuracy of the devices relative to ECG was a bit variable with average errors of 7.2 beats per minute (BPM) in the consumer-grade wearables and 13.9 BPM in the research-grade wearables at rest. During activity, errors in the consumer-grade wearables climbed to an average of 10.2 BPM and 15.9 in the research-grade wearables. It’s interesting to see that the research-grade devices actually performed worse than the consumer devices.

And there’s a silver lining if you’re an Apple user. The Apple Watch performed consistently better than all other devices with mean errors between 4-5 BPM during rest and during activity, unless you’re breathing deeply, which threw the Apple for a loop.

So, it seems as if wrist-worn heart rate monitors still have some work to do where accuracy is concerned. Although skin tone isn’t a worry, they all become less accurate when the subject is moving around.

If you’d like to try your own hand with fitness trackers, have a look at this completely open project, or go for the gold standard with a wearable DIY ECG.