Controlling Tremors As They Happen

Some neurological disorders, like Parkinson’s disease, can cause muscle tremors which can get worse as time goes along. In the beginning it may not be too difficult to manage, but as the disease progresses the tremors get worse and worse, until day-to-day movements are extremely difficult. Even picking up a fork or pouring a glass of water becomes nearly impossible. Some helpful tools have been designed to limit the impacts of the tremors, but this new device seeks to dampen the tremors directly.

A research team from Fresno State has been developing the Tremelo, which is a hand stabilizer that straps onto the arm of a person suffering from tremors. It has sets of tuned mass dampers in each of two enclosures, which rapidly shift the weights inside to counter the motion of the wearer’s tremors. The device has already shown success in 36 trial patients and does an incredible job at limiting the amount of tremors the user experiences, and also has a bonus of being non-invasive for the wearer.

The team has successfully trialed the program, but is currently seeking funding on Indiegogo. The project seems worthwhile and is a novel approach to a common problem. In the past, devices (admittedly with a much cheaper price tag) try to solve the problem externally rather than in the direction that the Tremelo has gone, and it’s a unique idea that shows a lot of promise.

Continue reading “Controlling Tremors As They Happen”

Supercon Talk: Sophy Wong Is Designing The Future Of Wearable Technology

For many of us, the term “wearable technology” conjures up mental images of the Borg from¬†Star Trek: harsh mechanical shapes and exposed wiring grafted haphazardly onto a human form that’s left with a range of motion just north of the pre-oilcan Tin Man. It’s simply a projection of the sort of hardware we’re used to. Hacker projects are more often than not a mass of wires and PCBs held in check with the liberal application of hot glue, with little in the way of what could be called organic design. That might be fine when you’re building a bench power supply, but unfortunately there are not many right angles to be found on the human body.

Believe it or not, this garment designed by Sophy Wong is 3D-printed

Thankfully, we have designers like Sophy Wong. Despite using tools and software that most of us would associate with mechanical design, her artistic eye and knowledge of fashion helps her create flexible components that conform to the natural contours of the wearer’s body. Anyone can take an existing piece of hardware and strap it to a person’s arm, but her creations are designed to fit like a tailored piece of clothing; a necessary evolution if wearable technology is ever going to progress past high-tech wrist watches.

During her talk “Made With Machines: 3D Printing & Laser Cutting for Wearable Electronics” at the 2019 Hackaday Superconference in Pasadena, Sophy walked attendees through the design process that she’s honed over years of working on wearable creations. Her designs start in the physical world, occasionally taking the form of sketches drawn directly onto the surface of whatever she’s working on, before being digitized and reproduced.

Featuring graceful curves and tessellated patterns that create a complex and undeniably futuristic look, many of her pieces would be exceptionally difficult to create without modern additive or subtractive manufacturing methods. But even still, Sophy explains that 3D printers and laser cutters aren’t magic; these machines free us from time consuming repetitive tasks, but the skill and effort necessary to create the design files they require are far from trivial.

Continue reading “Supercon Talk: Sophy Wong Is Designing The Future Of Wearable Technology”

PixMob LED Wristband Teardown (Plus IR Emitters And How To Spot Them)

PixMob units are wearable LED devices intended for crowds of attendees at events like concerts. These devices allow synchronized LED effects throughout the crowd. [yeokm1] did a teardown of one obtained from a preview for the 2019 Singapore National Day Parade (NDP), and in the process learned about the devices and their infrastructure.

Suspected IR emitter for the PixMob units, mounted on a lighting tower (marked here in white).

PixMob hardware has been known to change over time. This version has two RGB LEDs (an earlier version had only one), an unmarked EEPROM, an unmarked microcontroller (suspected to be the Abov MC81F4104), and an IR receiver module. Two CR1632 coin cells in series power the device. [yeokm1] has made the schematic and other source files available on the teardown’s GitHub repository for anyone interested in a closer look.

One interesting thing that [yeokm1] discovered during the event was the apparent source of the infrared emitter controlling the devices. Knowing what to look for and reasoning that such an emitter would be mounted with a good view of the crowd, [yeokm1] suspected that the IR transmitter was mounted on a lighting tower. Viewing the tower through a smartphone’s camera revealed a purplish glow not visible to the naked eye, which is exactly the way one would expect an IR emitter to look.

Sadly, there wasn’t any opportunity to record or otherwise analyze the IR signals for later analysis but it’s possible that the IR protocol might be made public at some point. After all, running custom code on an earlier PixMob board was made possible in part by asking the right people for help.

Mimic Artfully Employs LEDs In Fashion

Any science fiction piece set in the near-future involves clothes that light up or otherwise have some form of electronics inside. This hasn’t happened in mainstream fashion just yet, but [Amped Atelier] are doing serious work in the field. Mimic was their entry for the 2016 MakeFashion Gala, serving as a great example of LEDs in fashion done right.

Mimic consists of two pieces, designed as cocktail dresses that mimic their surroundings, in much the same way as a chameleon. LEDs are controlled by an Arduino, fitted with a colour sensor. When activated, the Arduino can change the color of the LEDs to match whatever is presented to the sender. This technology could serve as a great way to avoid clashing with a friend’s outfit, or to send a surreptitious signal to your ride that you’re ready to leave.

The LEDs are hidden beneath attractive geometric diffusers, which are 3D printed directly on to the fabric of the outfit. This gives an attractive, finished look to the garment, and allows the diffusers to naturally flow with the lines of the piece.

These pieces show that it’s possible to create glowable night wear that is as stylish as it is high tech. If you’re looking for something a little edgier however, we’ve got that too. Video after the break.

Continue reading “Mimic Artfully Employs LEDs In Fashion”

Build Yourself A Set Of Glowing Wings

Humans didn’t come with wings from the factory, and most efforts to fit them after the fact have been at least as far as flight is concerned, largely fruitless. That doesn’t mean you can’t cut a devastatingly sharp aesthetic though, and [Natalina’s] fiber optic wings are a great way to do just that.¬†

The wings are a leathercraft project, consisting of a harness worn around the torso. This serves as the mounting point for the fiber optics, as well as the RGB Critter flashlight used to drive the lightshow. Leather parts are lasercut to the right shape, making it easy to create the delicate feather shapes in the design. The pieces are then dyed appropriately and sewn together into the final shape. Bundles of optical fibers are then wound through the harness, sprouting from either shoulder of the wearer. EVA foam is used to help create the right shape for the wings, allowing the different layers to remain separated to create more visual depth.

It’s a build that looks absolutely striking at night, and unlike some other wing-based cosplays, doesn’t have as many drawbacks as far as crowds and transportation. It would make a killer look if you’re going as a Hacker Angel for Halloween this.

Makers certainly know how to craft some cutting-edge wearables. Got your own sweet build? Throw it at the tips line!

Laser Crown Shines At Night

Sometimes you need something really flashy to complete an outfit. Whether it’s a sparkly pair of earrings or a stylish necklace, accessories are key to competing on the fashion battlefield. For those who want to bring some serious firepower, [p3nguin’s] laser crown might be just what the doctor ordered.

At the outset, we should state the crown only uses lasers in its construction, for cutting felt and acrylic. The light source is a Neopixel ring from Adafruit, capable of bringing the vibrant colors without risk of eye damage. The ring is then assembled with a series of snap-together acrylic parts and a felt cap, with slots for hair pins to keep the crown in place on the wearer’s head. A Trinket drives the show, with a LiPo battery used as a lightweight power supply.

It’s a nice build that’s sure to draw plenty of attention. We see some great wearables around these parts; this EL jacket is a particular favorite. Video after the break.

Continue reading “Laser Crown Shines At Night”

This Heads Up Display Is All Wet

Athletes have a long history of using whatever they can find to enhance their performance or improve their training. While fitness tracker watches are nothing new, swimmers have used them to track their split times, distance, and other parameters. The problem with fitness trackers though is that you have to look at a watch. FORM has swim goggles that promise to address this, their smart goggles present the swimmer with a heads-up display of metrics. You can see a slick video about them below.

The screen is only on one eye, although you can switch it from left to right. The device has an inertial navigation system and is — of course — waterproof. It supposedly can withstand depths up to 32 feet and lasts 16 hours on a charge. It can use Bluetooth to send your data to your phone in addition to the display.

Continue reading “This Heads Up Display Is All Wet”