The First-Ever Kansas City Keyboard Meetup Is This Weekend

Sometimes, if you wait long enough for something you want, it will come to you. Whether it’s the law of attraction or just plain laziness, it has finally happened — there’s a keyboard meetup happening within a 500-mile radius of me. As far as I know, it’s the first one ever in Kansas City. I’m going, I’m bringing weird keyboards, and I might even have some Hackaday stickers to sprinkle around.

Although the event was originally planned to take place in the side room of a coffeehouse in the historic northeast, it was quickly moved to a much larger, co-working space downtown to accommodate all the maniacs like yours truly who want to bring a whole bunch of keebs. I’m even bringing some tables, y’all.

This’ll be more than just a show and tell, because what kind of object-focused nerd gathering would be complete without a swap meet element? You’re probably going to find that all kinds of keyboards and keyboard accessories are for sale, but you also might get lucky and win a cute bag of switches from Kinetic Labs, or a 3×4 macro pad from Boardsource (who will also have stickers on hand).

Come for the cool keyboards, and stay for the conversations you’ll strike up with the awesome folks who brought them. Who knows, maybe we’ll all infiltrate the slammin’ ice cream shop down the street.

Questions? Comments? Just want to share your excitement? Come join the Discord! If you’re planning to show up on Saturday, please take a second to fill out the head count document. If you do, it’ll probably net you a deli sandwich when you get there.

If you can’t make it, that’s okay — stay tuned for coverage of the event, and start planning for the next one, because hopefully, there will be many more to come.

Main and thumbnail images by Mingwei Lim on Unsplash

Optimizing The Mining Of Uranium From Coal Ash And Seawater

Of all the elements that make up the Earth’s crust, uranium is reasonably abundant, coming in at 49th place, ahead of elements such as tin, tungsten and silver. Ever since humankind began to exploit uranium for its fissile properties in energy production, this abundance has also translated into widespread availability for mining. As of 2019, Kazakhstan, Canada and Australia formed the world’s main producers, accounting for about 68% of output.

Considering the enormous energy density of uranium when used as fuel in a nuclear fission reactor, the demand for uranium is relatively low, especially combined with the long (two years on average) refueling cycles of commercial reactors. The effect is that even with the very inefficient once-through fuel cycle – which only uses a fraction of the uranium fuel’s potential energy – uranium market prices have remained relatively low and stable even amidst geopolitical crises.

Despite this, the gradual rise in uranium market prices ($10/lb in 2003, $49/lb in 2022), as well as the rapid construction of new reactors is driving new exploration. Here recent innovations may make uranium fuel even more accessible to all nations, by unlocking the billions of tons of uranium found in plain seawater as well as the many tons of fly ash produced by coal plants every single day.

Continue reading “Optimizing The Mining Of Uranium From Coal Ash And Seawater”

Ryobi Battery Hack Keeps CPAP Running Quietly

When it comes to cordless power tools, color is an important brand selection criterion. There’s Milwaukee red, for the rich people, the black and yellow of DeWalt, and Makita has a sort of teal thing going on. But when you see that painful shade of fluorescent green, you know you’ve got one of the wide range of bargain tools and accessories that only Ryobi can offer.

Like many of us, Redditor [Grunthos503] had a few junked Ryobi tools lying about, and managed to cobble together this battery-powered inverter for light-duty applications. The build started with a broken Ryobi charger, whose main feature was a fairly large case once relieved of its defunct guts, plus an existing socket for 18-volt battery packs. Added to that was a small Ryobi inverter, which normally plugs into the Ryobi battery pack and converts the 18 VDC to 120 VAC. Sadly, though, the inverter fan is loud, and the battery socket is sketchy. But with a little case modding and a liberal amount of hot glue, the inverter found a new home inside the charger case, with a new, quieter fan and even an XT60 connector for non-brand batteries.

It’s a simple hack, but one that [Grunthos503] may really need someday, as it’s intended to run a CPAP machine in case of a power outage — hence the need for a fan that’s quiet enough to sleep with. And it’s a pretty good hack — we honestly had to look twice to see what was done here. Maybe it was just the green plastic dazzling us. Although maybe we’re too hard on Ryobi — after all, they are pretty hackable.

Thanks to [Risu no Kairu] for the tip on this one.

Knife Throwing Machine Gets The Spin Just Right

Despite how it might appear in bad action movies, throwing a knife and making it stick in a target is no easy feat. Taking inspiration from the aforementioned movies, [Quint] and his son built a magazine-fed knife throwing machine, capable of sticking a knife at any distance within its range.

Throwing a sharp piece of metal with a machine isn’t that hard, but timing the spin to hit the target point-first is a real challenge. To achieve this, [Quint] used a pair of high-performance servo motors to drive a pair of parallel timing belts. Mounting a carriage with a rotating knife-holder between the belts allows for a spinning throw by running one belt slightly faster. The carriage slides on a pair of copper rails, which also provide power to the knife holder via a couple of repurposed carbon motor brushes.

At first, the knife holder was an electromagnet, but it couldn’t reliably hold or release the stainless steel throwing knives. This was changed to a solenoid-driven mechanism that locks into slots machined into the knives. Knives are fed automatically from a spring-loaded magazine at the back as long as the trigger is held down, technically making it full-auto. To match the spin rate to the throwing distance, a LIDAR sensor is used to measure the distance, which also adjusts the angle of the aiming laser to compensate for the knife’s trajectory.

The development process was fraught with frustration, failure, and danger. Unreliable knife holders, exploding carriages, and faulty electronics that seemingly fired of their own accord were all challenges that needed to be overcome. However, the result is a machine that can both throw knives and nurture a kid’s passion for building and programming.

Continue reading “Knife Throwing Machine Gets The Spin Just Right”