This Week In Security: IngressNightmare, NextJS, And Leaking DNA

This week, researchers from Wiz Research released a series of vulnerabilities in the Kubernetes Ingress NGINX Controller  that, when chained together, allow an unauthorized attacker to completely take over the cluster. This attack chain is known as IngressNightmare, and it affected over 6500+ Kubernetes installs on the public Internet.

The background here is that web applications running on Kubernetes need some way for outside traffic to actually get routed into the cluster. One of the popular solutions for this is the Ingress NGINX Controller. When running properly, it takes incoming web requests and routes them to the correct place in the Kubernetes pod.

When a new configuration is requested by the Kubernetes API server, the Ingress Controller takes the Kubernetes Ingress objects, which is a standard way to define Kubernetes endpoints, and converts it to an NGINX config. Part of this process is the admission controller, which runs nginx -t on that NGINX config, to test it before actually deploying.

As you might have gathered, there are problems. The first is that the admission controller is just a web endpoint without authentication. It’s usually available from anywhere inside the Kubernetes cluster, and in the worst case scenario, is accessible directly from the open Internet. That’s already not great, but the Ingress Controller also had multiple vulnerabilities allowing raw NGINX config statements to be passed through into the config to be tested. Continue reading “This Week In Security: IngressNightmare, NextJS, And Leaking DNA”

Dwingeloo telescope with sun shining through

Dwingeloo To Venus: Report Of A Successful Bounce

Radio waves travel fast, and they can bounce, too. If you are able to operate a 25-meter dish, a transmitter, a solid software-defined radio, and an atomic clock, the answer is: yes, they can go all the way to Venus and back. On March 22, 2025, the Dwingeloo telescope in the Netherlands successfully pulled off an Earth-Venus-Earth (EVE) bounce, making them the second group of amateurs ever to do so. The full breakdown of this feat is available in their write-up here.

Bouncing signals off planets isn’t new. NASA has been at it since the 1960s – but amateur radio astronomers have far fewer toys to play with. Before Dwingeloo’s success, AMSAT-DL achieved the only known amateur EVE bounce back in 2009. This time, the Dwingeloo team transmitted a 278-second tone at 1299.5 MHz, with the round trip to Venus taking about 280 seconds. Stockert’s radio telescope in Germany also picked up the returning echo, stronger than Dwingeloo’s own, due to its more sensitive receiving setup.

Post-processing wasn’t easy either. Doppler shift corrections had to be applied, and the received signal was split into 1 Hz frequency bins. The resulting detections clocked in at 5.4 sigma for Dwingeloo alone, 8.5 sigma for Stockert’s recording, and 9.2 sigma when combining both datasets. A clear signal, loud and proud, straight from Venus’ surface.

The experiment was cut short when Dwingeloo’s transmitter started failing after four successful bounces. More complex signal modulations will have to wait for the next Venus conjunction in October 2026. Until then, you can read our previously published article on achievements of the Dwingeloo telescope.

Scanning Film The Way It Was Meant To Be

Scanning a film negative is as simple as holding it up against a light source and photographing the result. But should you try such a straightforward method with color negatives it’s possible your results may leave a little to be desired. White LEDs have a spectrum which looks white to our eyes, but which doesn’t quite match that of the photographic emulsions.

[JackW01] is here with a negative scanning light that uses instead a trio of red, green, and blue LEDs whose wavelengths have been chosen for that crucial match. With it, it’s possible to make a good quality scan with far less post-processing.

The light itself uses 665 nm for red, 525 nm for green, and 450 nm blue diodes mounted in a grid behind a carefully designed diffuser. The write-up goes into great detail about the spectra in question, showing the shortcomings of the various alternatives.

We can immediately see the value here at Hackaday, because like many a photographer working with analogue and digital media, we’ve grappled with color matching ourselves.

This isn’t the first time we’ve considered film scanning but it may be the first project we’ve seen go into such detail with the light source. We have looked at the resolution of the film though.