Game boy with custom cartridge mounted on car dashboard

A Game Boy Speedometer, Just Because You Can

From a practical standpoint, [John] may be correct that his recent creation is the “world’s worst digital dash”, but we’re still oddly enamored with the idea of using a Nintendo Game Boy as a digital speedometer. Pulling it off meant interfacing the handheld with the vehicle’s CAN bus system, so whether you’re into retro gaming or car hacking, this project has something to offer.

Showing real-time vehicle speed on the Game Boy sounds like it should be relatively easy, but the iconic game system wasn’t exactly built for such a task. Its 2 MHz CPU and 160×144 pixel dot-matrix screen were every kid’s dream in 1989, but using it as a car dashboard is pushing it. To bridge that gap, [John] designed two custom circuit boards. One interfaces with the Game Boy, intercepting its memory requests and feeding it data from a microcontroller. The other processes the CAN bus signals, translating speed information into a form the Game Boy can display. [John] used inexpensive tools and software to read the CAN bus data, and used GBDK-2020 to write the software in C. His video goes in great detail on how to do this.

Months of work have gone into decoding the Game Boy’s data bus and creating a schematic for the interface board. Tricking the Game Boy into thinking it was loading a game, while actually displaying incoming speed data. The screen’s low resolution and slow refresh rate rendered it barely readable in a moving vehicle. But [John]’s goal wasn’t practicality — it was just proving it could be done.

Want to dive deep into the Game Boy?  Have you seen the Ultimate Game Boy talk?

Continue reading “A Game Boy Speedometer, Just Because You Can”

Hacked teddybear on a desk

Turning GLaDOS Into Ted: A Tale Of A Talking Toy

What if your old, neglected toys could come to life — with a bit of sass? That’s exactly what [Binh] achieved when he transformed his sister’s worn-out teddy bear into ‘Ted’, an interactive talking plush with a personality of its own. This project, which combines the GLaDOS Personality Core project from the Portal series with clever microcontroller tinkering, brings a whole new personality to a childhood favorite.

[Binh] started with the basics: a teddy bear already equipped with buttons and speakers, which he overhauled with an ESP32 microcontroller. The bear’s personality originated from GLaDOS, but was rewritten by [Binh] to fit a cheeky, teddy-bear tone. With a few tweaks in the Python-based fork, [Binh] created threads to handle touch-based interaction. For example, the ESP32 detects where the bear is touched and sends this input to a modified neural network, which then generates a response. The bear can, for instance, call you out for holding his paw for too long or sarcastically plead for mercy. I hear you say ‘but that bear Ted could do a lot more!’ Well — maybe, all this is just what an innocent bear with a personality should be capable of.

Instead, let us imagine future iterations featuring capacitive touch sensors or accelerometers to detect movement. The project is simple, but showcases the potential for intelligent plush toys. It might raise some questions, too.

Continue reading “Turning GLaDOS Into Ted: A Tale Of A Talking Toy”

Audio On A Shoestring: DIY Your Own Studio-Grade Mic

When it comes to DIY projects, nothing beats the thrill of crafting something that rivals expensive commercial products. In the microphone build video below, [Electronoobs] found himself inspired by DIY Perks earlier efforts. He took on the challenge of building a $20 high-quality microphone—a budget-friendly alternative to models priced at $500. The result: an engaging and educational journey that has it’s moments of triumph, it’s challenges, and of course, opportunities for improvement.

The core of the build lies in the JLI-2555 capsule, identical to those found in premium microphones. The process involves assembling a custom PCB for the amplifier, a selection of high-quality capacitors, and designing lightweight yet shielded wiring to minimize noise. [Electronoobs] also demonstrates the importance of a well-constructed metal mesh enclosure to eliminate interference, borrowing techniques like shaping mesh over a wooden template and insulating wires with ultra-thin enamel copper. While the final build does not quite reach the studio-quality level and looks of the referenced DIY Perks’ build, it is an impressive attempt to watch and learn from.

The project’s key challenge here would be achieving consistent audio quality. The microphone struggled with noise, low volume, and single-channel audio, until [Electronoobs] made smart modifications to the shielded wiring and amplification stages. Despite the hurdles, the build stands as an affordable alternative with significant potential for refinement in future iterations.

Continue reading “Audio On A Shoestring: DIY Your Own Studio-Grade Mic”

Life Without Limits: A Blind Maker’s Take On 3D Printing

In the world of creation, few stories inspire as much as [Mrblindguardian], a 33-year-old who has been blind since the age of two, but refuses to let that hold him back. Using OpenSCAD and a 3D printer, [Mrblindguardian] designs and prints models independently, relying on speech software and touch to bring his ideas to life. His story, published on his website Accessible3D.io, is a call to action for makers to embrace accessibility in their designs and tools.

[Mrblindguardian]’s approach to 3D printing with OpenSCAD is fascinating. Without visual cues, he can still code every detail of his designs, like a tactile emergency plan for his workplace. The challenges are there: navigating software as a blind user, mastering 3D printers, and building from scratch. His tip: start small. Taking on a very simple project allows you to get accustomed to the software while avoiding pressure and frustation.

His successes highlight how persistence, community support, and creativity can break barriers. His journey mirrors efforts by others, like 3D printed braille maps or accessible prosthetics, each turning daily limitations into ingenious innovations. [Mrblindguardian] seems to be out to empower others, so bookmark his page for that what’s yet to come.

Accessible tech isn’t just about empowering. Share your thoughts in the comments if you have similar experiences – or good solutions to limitations like these! As [Mrblindguardian] says on his blog: “take the leap. Let’s turn the impossible into the tangible—one layer at a time”.

Continue reading “Life Without Limits: A Blind Maker’s Take On 3D Printing”

Polarizer clock with rainbow glow clockface

Bending Light, Bending Time: A DIY Polarizer Clock

Imagine a clock where the colors aren’t from LEDs but a physics phenomenon – polarization. That’s just what [Mosivers], a physicist and electronics enthusiast, has done with the Polarizer Clock. It’s not a perfect build, but the concept is intriguing: using polarized light and stress-induced birefringence to generate colors without resorting to RGB LEDs.

The clock uses white LEDs to edge-illuminate a polycarbonate plate. This light passes through two polarizers—one fixed, one rotating—creating constantly shifting colours. Sounds fancy, but the process involves more trial and error than you’d think. [Mosivers] initially wanted to use polarizer-cut numbers but found the contrast was too weak. He experimented with materials like Tesa tape and cellophane, choosing polycarbonate for its stress birefringence.

The final design relies on a mix of materials, including book wrapping foil and 3D printed parts, to make things work. It has its quirks, but it’s certainly clever. For instance, the light dims towards the center, and the second polarizer is delicate and finicky to attach.

This gadget is a splendid blend of art and science, and you can see it in the video below the break. If you’re inspired, you might want to look up polariscope projects, or other birefringence hacks on Hackaday.

Continue reading “Bending Light, Bending Time: A DIY Polarizer Clock”

Flashlight shining through gold leaf on glass

Shining Through: Germanium And Gold Leaf Transparency

Germanium. It might sound like just another periodic table entry (number 32, to be exact), but in the world of infrared light, it’s anything but ordinary. A recent video by [The Action Lab] dives into the fascinating property of germanium being transparent to infrared light. This might sound like sci-fi jargon, but it’s a real phenomenon that can be easily demonstrated with nothing more than a flashlight and a germanium coin. If you want to see how that looks, watch the video on how it’s done.

The fun doesn’t stop at germanium. In experiments, thin layers of gold—yes, the real deal—allowed visible light to shine through, provided the metal was reduced to a thickness of 100 nanometers (or: gold leaf). These hacks reveal something incredible: light interacts with materials in ways we don’t normally observe.

For instance, infrared light, with its lower energy, can pass through germanium, while visible light cannot. And while solid gold might seem impenetrable, its ultra-thin form becomes translucent, demonstrating the delicate dance of electromagnetic waves and electrons.

The implications of these discoveries aren’t just academic. From infrared cameras to optics used in space exploration, understanding these interactions has unlocked breakthroughs in technology. Has this article inspired you to craft something new? Or have you explored an effect similar to this? Let us know in the comments!

We usually take our germanium in the form of a diode. Or, maybe, a transistor.

Continue reading “Shining Through: Germanium And Gold Leaf Transparency”

Nottingham Railway departure board in Hackspace

All Aboard The Hack Train: Nottingham’s LED Revival

Hackerspaces are no strangers to repurposing outdated tech, and Nottingham Hackspace happens to own one of those oddities one rarely gets their hands on: a railway departure board. Left idle for over a decade, it was brought back to life by [asjackson]. Originally salvaged around 2012, it remained unused until mid-2024, when [asjackson] decided to reverse-engineer it. The board now cycles between displaying Discord messages and actual train departures from Nottingham Railway Station every few minutes. The full build story can be found in this blog post.

The technical nitty-gritty is fascinating. Each side of the board contains 4,480 LEDs driven as two parallel chains. [asjackson] dove into its guts, decoding circuits, fixing misaligned logic levels, and designing custom circuit boards in KiCAD. The latest version swaps WiFi for a WizNet W5500 ethernet module and even integrates the Arduino Uno R4 directly into the board’s design. Beyond cool tech, the display connects to MQTT, pulling real-time train data and Discord messages via scripts that bridge APIs and custom Arduino code.

This board is a true gem for any hackerspace, even more so now it’s working. It waited for the exact mix of ingredients why hackerspaces exist in the first place: curiosity, persistence, and problem-solving. Nottingham Hackspace is home to a lot more, as we once wrote in this introductory article.If you don’t have room for the real thing, maybe set your sights a bit smaller.

Do you have a statement piece this cool in your hackerspace or your home? Tip us!

Continue reading “All Aboard The Hack Train: Nottingham’s LED Revival”