NASA Is Shutting Down The International Space Station Sighting Website

Starting on June 12, 2025, the NASA Spot the Station website will no longer provide ISS sighting information, per a message recently sent out. This means no information on sighting opportunities provided on the website, nor will users subscribed via the website receive email or text notifications. Instead anyone interested in this kind of information will have to download the mobile app for iOS or Android.

Obviously this has people, like [Keith Cowing] over at Nasa Watch, rather disappointed, due to how the website has been this easy to use resource that anyone could access, even without access to a smart phone. Although the assumption is often made that everyone has their own personal iOS or Android powered glass slab with them, one can think of communal settings where an internet café is the sole form of internet access. There is also the consideration that for children a website like this would be much easier to access. They would now see this opportunity vanish.

With smart phone apps hardly a replacement for a website of this type, it’s easy to see how the app-ification of the WWW continues, at the cost of us users.

The French Chinon nuclear power plant with its low-profile, forced-draft cooling towers. (Credit: EDF/Marc Mourceau)

Recovering Water From Cooling Tower Plumes With Plume Abatement

Electrostatic droplet capture system installed on an HVAC condenser. (Credit: Infinite Cooling)

As a common feature with thermal power plants, cooling towers enable major water savings compared to straight through cooling methods. Even so, the big clouds of water vapor above them are a clear indication of how much cooling water is still effectively lost, with water vapor also having a negative impact on the environment. Using so-called plume abatement the amount of water vapor making it into the environment can be reduced, with recently a trial taking place at a French nuclear power plant.

This trial featured electrostatic droplet capture by US-based Infinite Cooling, which markets it as able to be retrofitted to existing cooling towers and similar systems, including the condensers of office HVAC systems. The basic principle as the name suggests involves capturing the droplets that form as the heated, saturated air leaves the cooling tower, in this case with an electrostatic charge. The captured droplets are then led to a reservoir from which it can be reused in the cooling system. This reduces both the visible plume and the amount of cooling water used.

In a 2021 review article by [Shuo Li] and [M.R. Flynn] in Environmental Fluid Mechanics the different approaches to plume abatement are looked at. Traditional plume abatement designs use parallel streams of air, with the goal being to have condensation commence as early as possible rather than after having been exhausted into the surrounding air. Some methods used a mesh cover to provide a surface to condense on, while a commercially available technology are condensing modules which use counterflow in an air-to-air heat exchanger.

Other commercial solutions include low-profile, forced-draft hybrid cooling towers, yet it seems that electrostatic droplet capture is a rather new addition here. With even purely passive systems already seeing ~10% recapturing of lost cooling water, these active methods may just be the ticket to significantly reduce cooling water needs without being forced to look at (expensive) dry cooling methods.

Top image: The French Chinon nuclear power plant with its low-profile, forced-draft cooling towers. (Credit: EDF/Marc Mourceau)

Gene Editing Spiders To Produce Red Fluorescent Silk

Regular vs gene-edited spider silk with a fluorescent gene added. (Credit: Santiago-Rivera et al. 2025, Angewandte Chemie)
Regular vs gene-edited spider silk with a fluorescent gene added. (Credit: Santiago-Rivera et al. 2025, Angewandte Chemie)

Continuing the scientific theme of adding fluorescent proteins to everything that moves, this time spiders found themselves at the pointy end of the CRISPR-Cas9 injection needle. In a study by researchers at the University of Bayreuth, common house spiders (Parasteatoda tepidariorum) had a gene inserted for a red fluorescent protein in addition to having an existing gene for eye development disabled. This was the first time that spiders have been subjected to this kind of gene-editing study, mostly due to how fiddly they are to handle as well as their genome duplication characteristics.

In the research paper in Angewandte Chemie the methods and results are detailed, with the knock-out approach of the sine oculis (C1) gene being tried first as a proof of concept. The CRISPR solution was injected into the ovaries of female spiders, whose offspring then carried the mutation. With clear deficiencies in eye development observable in this offspring, the researchers moved on to adding the red fluorescent protein gene with another CRISPR solution, which targets the major ampullate gland where the silk is produced.

Ultimately, this research serves to demonstrate that it is possible to not only study spiders in more depth these days using tools like CRISPR-Cas9, but also that it is possible to customize and study spider silk production.

Fault Analysis Of A 120W Anker GaNPrime Charger

Taking a break from his usual prodding at suspicious AliExpress USB chargers, [DiodeGoneWild] recently had a gander at what used to be a good USB charger.

The Anker 737 USB charger prior to its autopsy. (Credit: DiodeGoneWild, YouTube)
The Anker 737 USB charger prior to its autopsy.

Before it went completely dead, the Anker 737 GaNPrime USB charger which a viewer sent him was capable of up to 120 Watts combined across its two USB-C and one USB-A outputs. Naturally the charger’s enclosure couldn’t be opened non-destructively, and it turned out to have (soft) potting compound filling up the voids, making it a treat to diagnose. Suffice it to say that these devices are not designed to be repaired.

With it being an autopsy, the unit got broken down into the individual PCBs, with a short detected that eventually got traced down to an IC marked ‘SW3536’, which is one of the ICs that communicates with the connected USB device to negotiate the voltage. With the one IC having shorted, it appears that it rendered the entire charger into an expensive paperweight.

Since the charger was already in pieces, the rest of the circuit and its ICs were also analyzed. Here the gallium nitride (GaN) part was found in the Navitas GaNFast NV6136A FET with integrated gate driver, along with an Infineon CoolGaN IGI60F1414A1L integrated power stage. Unfortunately all of the cool technology was rendered useless by one component developing a short, even if it made for a fascinating look inside one of these very chonky USB chargers.

Continue reading “Fault Analysis Of A 120W Anker GaNPrime Charger”

Plugging Plasma Leaks In Magnetic Confinement With New Guiding Center Model

Although the idea of containing a plasma within a magnetic field seems straightforward at first, plasmas are highly dynamic systems that will happily escape magnetic confinement if given half a chance. This poses a major problem in nuclear fusion reactors and similar, where escaping particles like alpha (helium) particles from the magnetic containment will erode the reactor wall, among other issues. For stellarators in particular the plasma dynamics are calculated as precisely as possible so that the magnetic field works with rather than against the plasma motion, with so far pretty good results.

Now researchers at the University of Texas reckon that they can improve on these plasma system calculations with a new, more precise and efficient method. Their suggested non-perturbative guiding center model is published in (paywalled) Physical Review Letters, with a preprint available on Arxiv.

The current perturbative guiding center model admittedly works well enough that even the article authors admit to e.g. Wendelstein 7-X being within a few % of being perfectly optimized. While we wouldn’t dare to take a poke at what exactly this ‘data-driven symmetry theory’ approach exactly does differently, it suggests the use machine-learning based on simulation data, which then presumably does a better job at describing the movement of alpha particles through the magnetic field than traditional simulations.

Top image: Interior of the Wendelstein 7-X stellarator during maintenance.

The World Wide Web And The Death Of Graceful Degradation

In the early days of the World Wide Web – with the Year 2000 and the threat of a global collapse of society were still years away – the crafting of a website on the WWW was both special and increasingly more common. Courtesy of free hosting services popping up left and right in a landscape still mercifully devoid of today’s ‘social media’, the WWW’s democratizing influence allowed anyone to try their hands at web design. With varying results, as those of us who ventured into the Geocities wilds can attest to.

Back then we naturally had web standards, courtesy of the W3C, though Microsoft, Netscape, etc. tried to upstage each other with varying implementation levels (e.g. no iframes in Netscape 4.7) and various proprietary HTML and CSS tags. Most people were on dial-up or equivalently anemic internet connections, so designing a website could be a painful lesson in optimization and targeting the lowest common denominator.

This was also the era of graceful degradation, where us web designers had it hammered into our skulls that using and navigating a website should be possible even in a text-only browser like Lynx, w3m or antique browsers like IE 3.x. Fast-forward a few decades and today the inverse is true, where it is your responsibility as a website visitor to have the latest browser and fastest internet connection, or you may even be denied access.

What exactly happened to flip everything upside-down, and is this truly the WWW that we want?

Continue reading “The World Wide Web And The Death Of Graceful Degradation”

3D Printing Uranium-Carbide Structures For Nuclear Applications

Fabrication of uranium-based components via DLP. (Zanini et al., Advanced Functional Materials, 2024)
Fabrication of uranium-based components via DLP. (Zanini et al., Advanced Functional Materials, 2024)

Within the nuclear sciences, including fuel production and nuclear medicine (radiopharmaceuticals), often specific isotopes have to be produced as efficiently as possible, or allow for the formation of (gaseous) fission products and improved cooling without compromising the fuel. Here having the target material possess an optimized 3D shape to increase surface area and safely expel gases during nuclear fission can be hugely beneficial, but producing these shapes in an efficient way is complicated. Here using photopolymer-based stereolithography (SLA) as  recently demonstrated by [Alice Zanini] et al. with a research article in Advanced Functional Materials provides an interesting new method to accomplish these goals.

In what is essentially the same as what a hobbyist resin-based SLA printer does, the photopolymer here is composed of uranyl ions as the photoactive component along with carbon precursors, creating solid uranium dicarbide (UC2) structures upon exposure to UV light with subsequent sintering. Uranium-carbide is one of the alternatives being considered for today’s uranium ceramic fuels in fission reactors, with this method possibly providing a reasonable manufacturing method.

Uranium carbide is also used as one of the target materials in ISOL (isotope separation on-line) facilities like CERN’s ISOLDE, where having precise control over the molecular structure of the target could optimize isotope production. Ideally equivalent photocatalysts to uranyl can be found to create other optimized targets made of other isotopes as well, but as a demonstration of how SLA (DLP or otherwise) stands to transform the nuclear sciences and industries.