Linux Fu: Eavesdropping On Serial

In the old days, if you wanted to snoop on a piece of serial gear, you probably had a serial monitor or, perhaps, an attachment for your scope or logic analyzer. Today, you can get cheap logic analyzers that can do the job, but what if you want a software-only solution? Recently, I needed to do a little debugging on a USB serial port and, of course, there isn’t really anywhere to easily tie in a monitor or a logic analyzer. So I started looking for an alternate solution.

If you recall, in a previous Linux Fu we talked about pseudoterminals which look like serial ports but actually talk to a piece of software. That might make you think: why not put a piece of monitor software between the serial port and a pty? Why not, indeed? That’s such a good idea that it has already been done. When it works, it works well. The only issue is, of course, that it doesn’t always work.

Continue reading “Linux Fu: Eavesdropping On Serial”

Linux Fu: The Browser Emacs Fusion

It is no secret that I have a few things permanently burned into my neurons: the 1802 instruction set, the commands for WordStar, and the commands for emacs. There was a time when emacs was almost my operating system. With no X11, emacs gave you a way to have a shell in one window, check your mail, and keep your work open.

I still use emacs a lot (although I’ve been getting more and more pleased with vscode with an emacs keybinding extension). But I also spend a lot of time — like right now — writing in a Web browser. Especially if I’m writing about code, it gets hard to remember which set of keys you have to use and I’ve wanted to do something about it for a long time. The answer is a very cool program called Autokey. (You can download my files for it, but you probably want to read more first.) It probably doesn’t work if you have switched to Wayland, but it can do a lot for you ranging from saving you some typing to reprogramming your favorite program to have different keystrokes. However, it isn’t without its problems, and I’ll tell you what I know about it.

The Value Proposition

Autokey sits in your system tray and it watches what you type. In its most simple usage, you can set up different phrases to substitute what you type.

For example, I might reprogram HaD to show up as Hackaday to save myself some typing. I usually use some odd character at the start or end so I don’t accidentally trigger things. So maybe I’m tired of typing or mistyping http://www.hackaday.com. I could set up ~had to automatically type the correct URL for me.

Continue reading “Linux Fu: The Browser Emacs Fusion”

Linux Fu: Roll With The Checksums

We are often struck by how often we spend time trying to optimize something when we would be better off just picking a better algorithm. There is the old story about the mathematician Gauss who, when in school, was given busy work to add the integers from 1 to 100. While the other students laboriously added each number, Gauss realized that 100+1 is 101 and 99 + 2 is also 101. Guess what 98 + 3 is? Of course, 101. So you can easily find that there are 50 pairs that add up to 101 and know the answer is 5,050. No matter how fast you can add, you aren’t likely to beat someone who knows that algorithm. So here’s a question: You have a large body of text and you want to search for it. What’s the best way?

Continue reading “Linux Fu: Roll With The Checksums”

Linux Fu: Docking Made Easy

Most computer operating systems suffer from some version of “DLL hell” — a decidedly Windows term, but the concept applies across the board. Consider doing embedded development which usually takes a few specialized tools. You write your embedded system code, ship it off, and forget about it for a few years. Then, the end-user wants a change. Too bad the compiler you used requires some library that has changed so it no longer works. Oh, and the device programmer needs an older version of the USB library. The Python build tools use Python 2 but your system has moved on. If the tools you need aren’t on the computer anymore, you may have trouble finding the install media and getting it to work. Worse still if you don’t even have the right kind of computer for it anymore.

One way to address this is to encapsulate all of your development projects in a virtual machine. Then you can save the virtual machine and it includes an operating system, all the right libraries, and basically is a snapshot of how the project was that you can reconstitute at any time and on nearly any computer.

In theory, that’s great, but it is a lot of work and a lot of storage. You need to install an operating system and all the tools. Sure, you can get an appliance image, but if you work on many projects, you will have a bunch of copies of the very same thing cluttering things up. You’ll also need to keep all those copies up-to-date if you need to update things which — granted — is sort of what you are probably trying to avoid, but sometimes you must.

Docker is a bit lighter weight than a virtual machine. You still run your system’s normal kernel, but essentially you can have a virtual environment running in an instant on top of that kernel. What’s more, Docker only stores the differences between things. So if you have ten copies of an operating system, you’ll only store it once plus small differences for each instance.

The downside is that it is a bit tough to configure. You need to map storage and set up networking, among other things. I recently ran into a project called Dock that tries to make the common cases easier so you can quickly just spin up a docker instance to do some work without any real configuration. I made a few minor changes to it and forked the project, but, for now, the origin has synced up with my fork so you can stick with the original link.

Continue reading “Linux Fu: Docking Made Easy”

Linux Fu: Easy Widgets

Here’s a scenario. You have a microcontroller that reads a number of items — temperatures, pressures, whatever — and you want to have a display for your Linux desktop that sits on the panel and shows you the status. If you click on it, you get expanded status and can even issue some commands. Most desktops support the notion of widgets, but developing them is a real pain, right? And even if you develop one for KDE, what about the people using Gnome?

Turns out there is an easy answer and it was apparently inspired by, of all things, a tool from the Mac world. That tool was called BitBar (now XBar). That program places a widget on your menu bar that can display anything you want. You can write any kind of program you like — shell script, C, whatever. The output printed from the program controls what appears on the widget using a simple markup-like language.

That’s fine for the Mac, but what about Linux? If you use Gnome, there is a very similar project called Argos. It is largely compatible with XBar, although there are a few things that it adds that are specific to it. If you use KDE (like I do) then you’ll want Kargos, which is more or less a port of Argos and adds a few things of its own.

Good News, Bad News

The good news is that, in theory, you could write a script that would run under all three systems. The bad news is that each has its own differences and quirks. Obviously, too, if you use a complied program that could pose a problem on the Mac unless you recompile.

Continue reading “Linux Fu: Easy Widgets”

Linux Fu: The Infinite Serial Port

Ok, the title is a bit misleading. Like most things in life, it really isn’t infinite. But I’m going to show you how you can use a very interesting Linux feature to turn one serial port from a microcontroller into a bunch of virtual ports. In theory, you could create over 200 ports, but the reality is you will probably want to stick with fewer.

The feature in question is what’s known as pseudoterminal or sometimes a pty or pts. These special files were made to feed data to programs that expect to accept data from a terminal. The files provide two faces. To the client, it looks like any other terminal device. To the creator, though, it is just another file. What you write to that file goes to the fake terminal and you can read anything that is sent from the program connected to the terminal. You use these all the time, probably, without realizing it since running a shell under X Windows, for example, doesn’t attach to a real terminal, after all.

You could, of course, do the same trick with a composite USB device, assuming you have one. Also assuming you can find a working driver and get it working. However, many microcontrollers have a serial port — even one with a USB converter built-in — but fewer have full-blown USB hardware. Even the ones that do are often at odds with strange drivers on the PC side. Serial ports work and work well even on the simplest microcontrollers.

The Plan

The plan is simple enough. A Linux program listens to a real serial port and watches for special character sequences in the data stream. Those sequences will allow you to switch data so that the data stream will go to a particular terminal. Data coming back from the terminals will go to the real serial port after sending a sequence that identifies its source.

Continue reading “Linux Fu: The Infinite Serial Port”

Linux Fu: An Odd Use For Fork()

If you are a Star Trek fan, you’ll probably remember the phrase “You have to learn why things work on a starship.” The truth is, in most episodes, knowing how to override another ship’s console or make gunpowder didn’t come in very handy, but boy when it did, it really saved the day. Linux is a lot like that. There are a few things you probably don’t need to know very often, but when you do need to know, it makes a huge difference. In this particular post, I want to look at an odd use of the fork system call. For many purposes, you’ll never need to know this particular irregular use. But when you need it, you are really going to need it.

This is actually based on an old client of mine who used Unix to run a massive and very critical report every day.  The report had a lot of math since they were trying to optimize something and then generate a lot of reports. In those days, the output of the report was on old green-bar paper on a line printer. The problem was that the report took something like 14 hours to run including the printouts. If someone discovered something wrong, there was no time to run the report again because the next day’s report would have to start before the second run would finish.

The client had a bunch of Windows programmers and — at that time — there wasn’t anything really analogous to a real fork call in Windows. I looked at the code and realized that probably most of the code was spending time waiting to print the output. The computer had multiple CPUs and there were multiple printers, but that one program was hanging on the one printer. There was a lot of data, so writing it to a database and then running different reports against it wasn’t a great option. The answer was to use the power of fork. With a change in the code that took less than 30 minutes, the report ran in five hours. They were very pleased.

So how did I do it? The answer lies in how fork works. Just about every time you see a fork, you see some sort of exec call to start a new program. So if you think about fork at all, you probably think it is part of how you start a new program and, most of the time, that’s true. Continue reading “Linux Fu: An Odd Use For Fork()”