A wooden table with a puzzle on top of it sits in an off white room with a light wood floor. A red chair sits behind the table and the slats of the rolled away tambour top are visible.

Tambour Table With A Puzzling Secret

Some people really like puzzles. [Simone Giertz] is one of these serious puzzle lovers and built a transforming table (YouTube) to let her easily switch between puzzles and more mundane tasks, like eating.

While there are commercial solutions out there for game tables with removable tops and simpler solutions like hinged lids, [Giertz] decided to “make it more complicated and over-engineered than that.” A tambour top that rolls out of the way makes this a unique piece of furniture already, but the second, puzzle table top that can be raised flush with the sides of the table really brings this to the next level.

If that wasn’t already enough, the brass handles on the table are also custom made. In grand maker tradition, [Giertz] listened to her inner MYOG (Make Your Own Gnome) and got a lathe to learn to make her own handles instead of just buying some off the shelf.

If you’re less enamored of puzzles, you may want to see how Jigsaw Puzzles are Defeated. If you’re worried about losing pieces, check out these 3D Printed Sliding Puzzles.

Continue reading “Tambour Table With A Puzzling Secret”

A small widescreen laptop repeating the ThinkPad style. It looks cute; sadly, it does not exist.

[Dana Sibera] Creates Devices That Don’t Exist

[Dana Sibera], known as [@NanoRaptor] on Twitter, makes us wonder about devices that could have been, and wince about devices that must never see the light of day – summoned into existence by her respectable photo editing and 3D modeling skills. Ever wanted to see a Model M with a small green-tinted CRT built into its side? Now you have. Perhaps, a “self-tapping” DE-9 plug with wood screws for pins? Tough luck, here it is anyway, but you can have a palate cleanser if it was too much to bear. Having started over a year ago with the classic “spicy pillows, but actually pillows” design, she keeps gracing us with portrayals of tech and tech-adjacent objects straight from the depths of her imagination.

None of the things she shows exist in real life, some regretfully and some thankfully so, but that’s not the first thing on your mind when you stumble upon a cube-shaped iPod with a built-in equalizer in your Twitter feed. Pictures like this “cassette ROM” or the deluxe woodgrain 386DX are quite apparent in what they are. On the other hand, devices like this “Mini VGA” dongle or the amber CRT-adorned TI92 Plus might have you reach for your wallet before you realize what’s up, and the photographic-proof-accompanied assertion about early floppy drives being punchcard-based might have you believe you are just not up to date on your retrocomputing trivia. Continue reading “[Dana Sibera] Creates Devices That Don’t Exist”

PCB antenna rendered useless by overly enthusiastic copper fill.

The Many Ways You Can Easily Ruin Your PCB Antenna Design

PCB antenna impaired by copper fill and other attenuation sources.
PCB antenna impaired by copper fill and other attenuation sources.

We have all seen Printed Circuit Board (PCB) antennas: those squiggly bits of traces on PCBs connected often to a Bluetooth, WiFi or other wireless communication chip. On modules like for the ESP8266 and ESP32 platforms the PCB antennas are often integrated onto the module’s PCB, yet even with such a ready-made module it’s possible to completely destroy the effectiveness of this antenna. These and other design issues are discussed in this article by [MisterHW].

It covers a range of examples of poor design, from having ground fill underneath an antenna, to having metal near the antenna, to putting dielectric materials near or on top of the antenna. The effect of all of these issues is generally to attenuate the signal, sometimes to the point where the antenna is essentially useless.

Ultimately, the best PCB antenna design is one where there is no nearby copper fill, and there are no traces running near or on layers below the antenna. After all, any metal trace or component is an antenna, and any dielectric materials will dampen the signal. Fortunately, there is e.g. a free KiCad library with ready-to-use PCB antenna designs to help one get started with a custom design, as well as many other resources, covered in the article.

If you want to get really professional about checking the effectiveness of an antenna design, you’ll want to use a Network Vector Analyzer. These will also help you with tuning the capacitors used with the PCB antenna.

(Featured image: PCB antenna rendered useless by overly enthusiastic copper fill.)

A hand holding a paper cup pours orange resin into a mold. There are several different colors in a spiral inside a circular mold on a circular platform with holes around its perimeter sitting on a wooden table.

Reproducing Vinyl Records In Resin

While most are just plain, vinyl records can be found in a variety of colors, shapes, and some even glow in the dark. [Evan and Katelyn] decided to spruce up a plain old record by replicating it in bright, glow-in-the-dark resin.

By first making a silicone mold of the vinyl record and then pouring several different colors of resin into the resulting mold, [Evan and Katelyn] were able to make a groovy-looking record that still retained the texture necessary to transmit the original sounds of the record. The resulting piece has some static, but the music is still identifiable. That said, audiophiles would probably prefer to leave this up on the wall instead of in their phonograph.

Acrylic rings were laser cut and bolted together to build the form for the silicone mold with the original record placed at the bottom. To prevent bubbles, the silicone was degassed in a vacuum chamber before pouring over the record and the resin was cured in a pressure pot after pouring into the resulting mold.

If you’re interested in how records were originally made, check out this installment of Retrotechtacular. A more practical application of resin might be this technique to reproduce vintage plastic parts.

Continue reading “Reproducing Vinyl Records In Resin”

A segmented lamp made of circular slices of plywood. They are arranged as shutters around a long, skinny LED bulb in the center that gives off an incadescent-looking glow. A cord trails off to the left against the grey background.

Plywood Lamp Has Customizable Light Output

There’s something about light fixtures that attracts makers like moths to a flame. [danthemakerman] wanted something with a more configurable light output and built this Sculptural and Customizable Plywood Lamp.

In his detailed build log, [danthemakerman] describes how he wanted something “sort of like an analog dimmable light.” By using a stack of split plywood donuts hinged on a brass rod, he can vary the output and shape of the lamp. These shutters allow the lamp to go from bright to nightlight without using any electrical dimming components.

The plywood was rough cut on a bandsaw before being turned on a lathe. The light cover sections were then hollowed out with a Forstner bit and split in half. The tricky bit is the overlap of the cut on the hinge side of the shutters. Cutting the piece exactly in half would’ve required a lot more hardware to make this lamp work than what was achieved by patient woodworking.

If you’d like to see more ways to make light fixtures with plywood, check out this Hexagonal Lamp, these Upcycled Plywood and Glass Lamps, or this Laser-cut Sphere Lampshade that Packs Flat.

Linux Fu: Easy VMs

It wasn’t long ago that we looked at easily creating Docker containers from the command line so you could just easily spin up a virtual environment for development. Wouldn’t it be nice if you could do the same for virtual machines? You can. Using Multipass from Canonical, the makers of Ubuntu, you can easily spin up virtual machines under Linux, Mac, or Windows. Granted, most of the virtual machines in question are variations of Ubuntu, but there are some additional images available, and you can create your own.

Once you have it installed, starting up a new Ubuntu instance is trivial. If you have a set configuration, you can even set up predefined setups using a YAML file.

Continue reading “Linux Fu: Easy VMs”

Exploring Piston Engine Design With LEGO

When learning about the design of a machine or mechanism, reading and watching videos is certainly effective, but it’s hard to beat hands-on experimentation. In the video after the break, [Brick Technology] uses LEGO to gain some practical insight into the world of piston engine design, from single-cylinder all the way up to radial twelve-cylinder engines.

Using pneumatic cylinders from the LEGO Technic series, [Brick Technology] starts by getting the basics working with a single-cylinder design. Besides the fact that there are no fuel-air explosions involved, these pistons are also double-acting thanks to a valve mechanism that switches the pressurized side of the piston as it reaches the end of its stroke. After a couple of experiments, he settles on using a bank of six two liter soda bottles as a source of pressurized air.

He also increased the performance of the LEGO cylinders by drilling out the ports and adding silicon oil for lubrication. In the initial prototypes, the cylinders also acted as connecting rods, tilting back and forth as the crankshaft rotates. After some testing, he discovered he could increase efficiency by constraining the cylinder with a slider mechanism and adding a separate connecting rod.

With the basics done, [Brick Technology] could start experimenting with engine arrangements and geometry. Inline two, three, and four cylinders and V2, V6, V8, and even R12 were all on the menu. He could also change crankshaft geometry to trade torque for RPM and vice versa, and build a starter motor, and torque generator.

Just like [Brick Technology]’s LEGO electronic drums and vortex machine, this video gives us a itch that can only be scratched by a few hundred LEGO pieces. For rapid prototyping of course.