Plasma Discharges Show You Where The Radiation Is

Depending on the context of the situation, the staccato clicks or chirps of a Geiger counter can be either comforting or alarming. But each pip is only an abstraction, an aural indication of when a particle or ray of ionizing radiation passed through a detector. Knowing where that happened might be important, too, under the right circumstances.

While this plasma radiation detector is designed more as a demonstration, it does a pretty good job at localizing where ionization events are happening. Designed and built by [Jay Bowles], the detector is actually pretty simple. Since [Jay] is the type of fellow with plenty of spare high-voltage power supplies lying around, he took a 6 kV flyback supply from an old build and used it here. The detector consists of a steel disk underneath a network of fine wires. Perched atop a frame of acrylic and powered by a 9 V battery, the circuit puts high-voltage across the plate and the wires. After a substantial amount of tweaking, [Jay] got it adjusted so that passing alpha particles from a sample of americium-241 left an ionization trail between the conductors, leading to a miniature lightning bolt.

In the video below, the detector sounds very similar to a Geiger counter, but with the added benefit of a built-in light show. We like the way it looks and works, although we’d perhaps advise a little more caution to anyone disassembling a smoke detector. Especially if you’re taking apart Soviet-era smoke alarms — you might get more than you bargained for.

Continue reading “Plasma Discharges Show You Where The Radiation Is”

Alternative Uses For Nuclear Waste

Nuclear power is great if you want to generate a lot of electricity without releasing lots of CO2 and other harmful pollutants. However, the major bugbear of the technology has always been the problem of waste. Many of the byproducts from the operation of nuclear plants are radioactive, and remain so for thousands of years. Storing this waste in a safe and economical fashion continues to be a problem.

Alternative methods to deal with this waste stream continue to be an active area of research. So what are some of the ways this waste can be diverted or reused?

Fast Breeders Want To Close The Fuel Cycle

The Superphénix reactor in France is one of a handful of operational fast-neutron reactor designs.

One of the primary forms of waste from a typical nuclear light water reactor (LWR) is the spent fuel from the fission reaction. These consist of roughly 3% waste isotopes, 1% plutonium isotopes, and 96% uranium isotopes. This waste is high in transuranic elements, which have half-lives measured in many thousands of years. These pose the biggest problems for storage, as they must be securely kept in a safe location for lengths of time far exceeding the life of any one human society.

The proposed solution to this problem is to instead use fast-neutron reactors, which “breed” non-fissile uranium-238 into plutonium-239 and plutonium-240, which can then be used as fresh fuel. Advanced designs also have the ability to process out other actinides, also using them as fuel in the fission process. These reactors have the benefit of being able to use almost all the energy content in uranium fuel, reducing fuel use by 60 to 100 times compared to conventional methods.

Continue reading “Alternative Uses For Nuclear Waste”