DIY Arc Light Makes An Unnecessarily Powerful Bicycle Headlight

Remember when tricking out a bike with a headlight meant clamping a big, chrome, bullet-shaped light to your handlebar and bolting a small generator to your front fork? Turning on the headlight meant flipping the generator into contact with the front wheel, powering the incandescent bulb for the few feet it took for the drag thus introduced to grind you to a halt. This ridiculous arc-lamp bicycle headlight is not that. Not by a long shot.

We’re used to seeing [Alex] doing all manner of improbable, and sometimes impossible, things on his popular KREOSAN YouTube channel. And we’re also used to watching his videos in Russian, which detracts not a whit  from the entertainment value for Andglophones; subtitles are provided for the unadventurous, however. The electrodes for his arc light are graphite brushes from an electric streetcar, while the battery is an incredibly sketchy-looking collection of 98 18650 lithium-ion cells. A scary rat’s nest of coiled cable acts as a ballast to mitigate the effects of shorting when the arc is struck. The reflector is an old satellite TV dish covered in foil tape with the electrodes sitting in a makeshift holder where the feedhorn used to be. It’s bright, it’s noisy, it’s dangerous, and it smokes like a fiend, but we love it.

Mounting it to the front of the bike was just for fun, of course, and it works despite the janky nature of the construction. The neighbors into whose apartments the light was projected could not be reached for comment, but we assume they were as amused as we were.

Continue reading “DIY Arc Light Makes An Unnecessarily Powerful Bicycle Headlight”

Add Some Edge To Your Blades With Blown-Arc Plasma

If you polled science fiction fans on what piece of technology portrayed by the movies that they most desire, chances are pretty good that the lightsabers from the Star Wars franchise would be near the top of the list. There’s just something about having that much power in the palm of your hand and still needing to be up close and personal to fight with it. Plus being able to melt holes in bulkheads is pretty keen, as are the cool sounds.

Sadly, the day we can shape and contain plasma in a blade-shaped field is probably pretty far off, but that didn’t stop [Alan Pan] from trying the next best thing: a handheld plasma-projecting blade. He starts with a basic Jacob’s ladder. We’ve seen many of these before, but the basic idea is to ionize the air between two parallel, vertical conductors; the hot plasma heats the air causing it to rise until it reaches the top and snuffs itself out, starting the process over again at the bottom. His twist is to force the plasma into a sheet between the electrodes with air from a leaf blower, forming a blown-arc plasma. That’s pretty cool looking by itself, but he also stretched the electrodes along razor-sharp wood planer blades, for extra danger. We have to admit that the thing looks pretty intimidating, even if the plasma doesn’t really pack bulkhead-melting thermal power. Check out the results in the video below.

We’d love to see [Alan] make good on his promise to make the whole thing self-contained with an electric ducted fan or mini jet engine. Even as it is, it’s still pretty neat. It’s not really his first lightsaber rodeo, but at least this one doesn’t need butane.

Continue reading “Add Some Edge To Your Blades With Blown-Arc Plasma”

Plasma Etching In A Microwave

Deep inside your smartphone are a handful of interesting miniature electromechanical devices. The accelerometer is a MEMS device, and was produced with some of the most impressive industrial processes on the planet. Sometimes, these nanoscale devices are produced with plasma etching, which sounds about as cool as it actually is. Once the domain of impossibly expensive industrial processes, you can now plasma etch materials in a microwave.

Of course, making plasma in this way is nothing new. If you cut a grape in half and plop it in a microwave, some really cool stuff happens. This is just the 6th grade science class demonstration of what a plasma is, and really it’s only a few dissociated water, oxygen, and nitrogen molecules poofing in a microwave. To do something useful with this plasma, you need a slightly more controlled environment.

The researchers behind this paper used a small flask with an evacuated atmosphere (about 300 mTorr) placed into a microwave for a few seconds. The experiments consisted of reducing graphene oxide to graphene, with the successful production of small squares of graphene bonded to PET film. Other experiments changed the optical properties of a zinc oxide film deposited onto a glass microscope slide and changing a PDMS film from being hydroscopic to hydrophobic.

While the results speak for themselves — you can use a microwave to generate plasma, and that plasma can change the properties of any exposed material — this is far from a real industrial process. That said, it’s good enough for an experiment and another neat technique in the home lab’s bag of tricks.

A Plasma Speaker Using A TL494

We’re used to loudspeakers as circular components with a paper cone and a big magnet inside which is suspended a coil that is connected to our audio amplifier. But moving-coil speakers are not the only way to create sound from electricity, there are one or two other weapons in the audio designer’s arsenal.

One of the more spectacular and entertaining is the plasma speaker, and it’s one [Marcin Wachowiak] has been experimenting with. A continuous plasma in the form of a discharge between two electrodes is modulated with an audio signal, and the resulting rapid changes in the volume of plasma creates a sound. The value of a plasma speaker lies in the exceptionally low size and mass of the element producing the sound, meaning that while it can only effectively reproduce high frequencies it can do so from a much closer approximation to a point source than can other types of tweeter. For this reason it’s beloved of some audiophiles, and you will find a few commercially produced plasma tweeters at the high-end of the audio market.

[Marcin] isn’t in it for the audiophilia, instead he’s interested in the properties of the plasma. His plasma speaker does do the job well though, and in particular he’s put a lot of thought into the design of its drive circuit. At its heart is the ubiquitous TL494 PWM controller that you may be more familiar with in the context of switching power supplies, this one applies the audio drive as PWM to the gate of a MOSFET that switches the primary of a flyback transformer. He’s added refinements such as a gate discharge circuit and a second primary winding with a freewheel diode.

The result is an effective plasma speaker. It’s difficult to judge from his YouTube video below the break whether he’s achieved audiophile purity, but happily that’s not the point. We’ve shown you a few other plasma speakers in our time, if the subject interests you then take a look at this rotating plasma vortex, or a version using a 555 timer.

Continue reading “A Plasma Speaker Using A TL494”

A Dramatic Demo of AC Versus DC Switching

Switches seem to be the simplest of electrical components – just two pieces of metal that can be positioned to either touch each other or not. As such it would seem that it shouldn’t matter whether a switch is used for AC or DC. While that’s an easy and understandable assumption, it can also be a dangerous one, as this demo of AC and DC switching dramatically reveals.

Using a very simple test setup, consisting of an electric heater for a load, a variac to control the voltage, and a homemade switch, [John Ward] walks us through the details of what happens when those contacts get together. With low-voltage AC, the switch contacts exhibit very little arcing, and even with the voltage cranked up all the way, little more than a brief spark can be seen on either make or break. Then [John] built a simple DC supply with a big rectifier and a couple of capacitors to smooth things out and went through the same tests. Even at a low DC voltage, the arc across the switch contacts was dramatic, particularly upon break. With the voltage cranked up to the full 240-volts of the UK mains, [John]’s switch was essentially a miniature arc welder, with predictable results as the plastic holding the contacts melted. Don your welding helmet and check out the video below.

As dramatic as the demo is, it doesn’t mean we won’t ever be seeing DC in the home. It just means that a little extra engineering is needed to make sure that all the components are up to snuff.

Continue reading “A Dramatic Demo of AC Versus DC Switching”

Simple Jig Uses Electromagnet For Clean Angle Grinder Cuts

We like it when hacks are literal hack jobs, put together with what’s on hand to do a specific job. This quick and dirty angle grinder circle cutter certainly fills the bill, and makes decent cuts in sheet metal to boot.

The build starts with an unlikely source for parts – an old automotive AC compressor. The one that [Made in Poland] chose to sacrifice was particularly nasty and greasy, but after popping off the pulley, the treasure within was revealed: the large, ring-shaped clutch electromagnet. Liberated from the compressor, the electromagnet was attached to a small frame holding a pillow block. That acts as an axis for an adjustable-length arm, the other end of which holds a modified angle grinder. In use, the electromagnet is powered up by a small 12-volt power supply, fixing the jig in place on the stock. The angle grinder is traced around and makes a surprisingly clean cut. Check out the build and the tool in use in the video below.

At the time [Made in Poland] recorded the video, he noted that he did not have a plasma cutter. That appears to have changed lately, so perhaps he’ll swap out the angle grinder for plasma. And maybe he’ll motorize it for even smoother cuts.

Continue reading “Simple Jig Uses Electromagnet For Clean Angle Grinder Cuts”

Linear Track Makes Plasma Cuts Neat And Simple

No microcontroller, no display, and not even an LED in sight. That’s how [Made in Poland] decided to roll with this motorized linear plasma cutter, and despite the simplicity it really gets the job done when there’s metal to be cut.

Plasma cutting makes slicing and dicing heavy stock a quick job, but it’s easy to go off course with the torch or to vary the speed and end up with a poor edge. This tool takes the shakes out of the equation with a completely homebrew linear slide fabricated from square tubing. A carriage to hold the plasma cutter torch moves on a length of threaded rod chucked into the remains of an old cordless drill. The original clutch of the drill removes the need for limit switches when the carriage hits either end of the slide, which we thought was a great touch. Simple speed and direction controls are provided, as is a connection in parallel with the torch’s trigger. One nice feature of the carriage is the ability to swivel the torch at an angle, making V-groove welds in thick stock a snap. No need for a complicated bed with sacrificial supports and a water bath, either — just hang the stock over the edge of a table and let the sparks fall where they may.

Simple is better sometimes, but a CNC plasma table may still be your heart’s desire. We understand.

Continue reading “Linear Track Makes Plasma Cuts Neat And Simple”