Alternative Uses For Nuclear Waste

Nuclear power is great if you want to generate a lot of electricity without releasing lots of CO2 and other harmful pollutants. However, the major bugbear of the technology has always been the problem of waste. Many of the byproducts from the operation of nuclear plants are radioactive, and remain so for thousands of years. Storing this waste in a safe and economical fashion continues to be a problem.

Alternative methods to deal with this waste stream continue to be an active area of research. So what are some of the ways this waste can be diverted or reused?

Fast Breeders Want To Close The Fuel Cycle

The Superphénix reactor in France is one of a handful of operational fast-neutron reactor designs.

One of the primary forms of waste from a typical nuclear light water reactor (LWR) is the spent fuel from the fission reaction. These consist of roughly 3% waste isotopes, 1% plutonium isotopes, and 96% uranium isotopes. This waste is high in transuranic elements, which have half-lives measured in many thousands of years. These pose the biggest problems for storage, as they must be securely kept in a safe location for lengths of time far exceeding the life of any one human society.

The proposed solution to this problem is to instead use fast-neutron reactors, which “breed” non-fissile uranium-238 into plutonium-239 and plutonium-240, which can then be used as fresh fuel. Advanced designs also have the ability to process out other actinides, also using them as fuel in the fission process. These reactors have the benefit of being able to use almost all the energy content in uranium fuel, reducing fuel use by 60 to 100 times compared to conventional methods.

Continue reading “Alternative Uses For Nuclear Waste”

Hacking Shelters And Swimming Pools

How would you survive in a war-torn country, where bombs could potentially fall from the sky with only very short notice? And what if the bomb in question were The Bomb — a nuclear weapon? This concern is thankfully distant for most of us, but it wasn’t always so. Only 75 years ago, bombs were raining down on England, and until much more recently the threat of global thermonuclear war was encouraging school kids to “duck and cover”. How do you protect people in these situations?

The answers, naturally, depend on the conditions at hand. In Britain before the war, money was scarce and many houses didn’t have basements or yards that were large enough to build a family-sized bomb shelter in, and they had to improvise. In Cold War America, building bomb shelters ended up as a boon for the swimming pool construction industry. In both cases, bomb shelters proved to be a test of engineering ingenuity and DIY gumption, attempting to save lives in the face of difficult-to-quantify danger from above.

Continue reading “Hacking Shelters And Swimming Pools”

Atomic Power Gets Small

There was a time when nuclear power plants were going to save the world. Barring accidents, the plants are clean and generate a lot of power. However, a few high-profile accidents and increased public awareness of some key issues have made nuclear power a hard sell, at least in the United States. The fastest growing nuclear power-related business in the US — according to sources — is companies decommissioning nuclear power plants. However, there’s a move afoot to make nuclear power a viable solution again. The company behind it says their plants will be cheaper to build, cheaper to operate, and are much safer than conventional plants. Are those claims reasonable?

Continue reading “Atomic Power Gets Small”

Fail Of The Week: A Candle Caused Browns Ferry Nuclear Incident

A colleague of mine used to say he juggled a lot of balls; steel balls, plastic balls, glass balls, and paper balls. The trick was not to drop the glass balls. How do you know which is which? For example, suppose you were tasked with making sure a nuclear power plant was safe. What would be important? A fail-safe way to drop the control rods into the pile, maybe? A thick containment wall? Two loops of cooling so that only the inner loop gets radioactive? I’m not a nuclear engineer, so I don’t know, but ensuring electricians at a nuclear plant aren’t using open flames wouldn’t be high on my list of concerns. You might think that’s really obvious, but it turns out if you look at history that was a glass ball that got dropped.

In the 1960s and 70s, there was a lot of optimism in the United States about nuclear power. Browns Ferry — a Tennessee Valley Authority (TVA) nuclear plant — broke ground in 1966 on two plants. Unit 1 began operations in 1974, and Unit 2 the following year. By 1975, the two units were producing about 2,200 megawatts of electricity.

That same year, an electrical inspector and an electrician were checking for air leaks in the spreading room — a space where control cables split to go to the two different units from a single control room.  To find the air drafts they used a lit candle and would observe the flame as it was sucked in with the draft. In the process, they accidentally started a fire that nearly led to a massive nuclear disaster.

Continue reading “Fail Of The Week: A Candle Caused Browns Ferry Nuclear Incident”

Project Orion: Detonating Nuclear Bombs For Thrust

Rockets with nuclear bombs for propulsion sounds like a Wile E. Coyote cartoon, but it has been seriously considered as an option for the space program. Chemical rockets combust a fuel with an oxidizer within themselves and exhaust the result out the back, causing the rocket to move in the opposite direction. What if instead, you used the higher energy density of nuclear fission by detonating nuclear bombs?

Detonating the bombs within a combustion chamber would destroy the vehicle so instead you’d do so from outside and behind. Each bomb would include a little propellant which would be thrown as plasma against the back of the vehicle, giving it a brief, but powerful push.

That’s just what a group of top physicists and engineers at General Atomic worked on between 1958 and 1965 under the name, Project Orion. They came close to doing nuclear testing a few times and did have success with smaller tests, exploding a series of chemical bombs which pushed a 270-pound craft up 185 feet as you’ll see below.

Continue reading “Project Orion: Detonating Nuclear Bombs For Thrust”

34C3: Vintage Verification, Stop Nuclear War With A 6502

Our better-traveled colleagues having provided ample coverage of the 34C3 event in Leipzig just after Christmas, it is left to the rest of us to pick over the carcass as though it was the last remnant of a once-magnificent Christmas turkey.  There are plenty of talks to sit and watch online, and of course the odd gem that passed the others by.

It probably doesn’t get much worse than nuclear conflagration, when it comes to risks facing the planet. Countries nervously peering at each other, each jealously guarding their stocks of warheads. It seems an unlikely place to find a 34C3 talk about 6502 microprocessors, but that’s what [Moritz Kütt] and [Alex Glaser] managed to deliver.

Policing any peace treaty is a tricky business, and one involving nuclear disarmament is especially so. There is a problem of trust, with so much at stake no party is anxious to reveal all but the most basic information about their arsenals and neither do they trust verification instruments manufactured by a state agency from another player. Thus the instruments used by the inspectors are unable to harvest too much information on what they are inspecting and can only store something analogous to a hash of the data they do acquire, and they must be of a design open enough to be verified. This last point becomes especially difficult when the hardware in question is a modern high-performance microprocessor board, an object of such complexity could easily have been compromised by a nuclear player attempting to game the system.

We are taken through the design of a nuclear weapon verification instrument in detail, with some examples and the design problems they highlight. Something as innocuous as an ATtiny microcontroller seeing to the timing of an analogue board takes on a sinister possibility, as it becomes evident that with compromised code it could store unauthorised information or try to fool the inspectors. They show us their first model of detector using a Red Pitaya FPGA board, but make the point that this has a level of complexity that makes it unverifiable.

The gamma ray energy spectrum of a cobalt-60 source as seen from an Apple II.
The gamma ray energy spectrum of a cobalt-60 source as seen from an Apple II.

Then comes the radical idea, if the technology used in this field is too complex for its integrity to be verified, what technology exists at a level that can be verified? Their answer brings us to the 6502, a processor in continuous production for over 40 years and whose internal structures are so well understood as to be de facto in the public domain. In particular they settle upon the Apple II home computer as a 6502 platform, because of its ready availability and the expandability of [Steve Wozniak]’s original design. All parties can both source and inspect the instruments involved.

If you’ve never examined a nuclear warhead verification device, the details of the system are fascinating. We’re shown the scintillation detector for measuring the energies present in the incident radiation, and the custom Apple II ADC board which uses only op-amps, an Analog Devices flash ADC chip, and easily verifiable 74-series logic. It’s not intentional but pleasing from a retro computing perspective that everything except perhaps the blue LED indicator could well have been bought for an Apple II peripheral back in the 1980s. They then wrap up the talk with an examination of ways a genuine 6502 system could be made verifiable through non-destructive means.

It is not likely that nuclear inspectors will turn up to the silos with an Apple II in hand, but this does show a solution to some of the problems facing them in their work and might provide pointers towards future instruments. You can read more about their work on their web site.

How Low-Power Can You Go?

[lasersaber] has a passion: low-power motors. In a bid to challenge himself and inspired by betavoltaic cells, he has 3D printed and built a small nuclear powered motor!

This photovoltaic battery uses fragile glass vials of tritium extracted from keychains and a small section of a solar panel to absorb the light, generating power. After experimenting with numerous designs, [lasersaber] went with a 3D printed pyramid that houses six coils and three magnets, encapsulated in a glass cloche and accompanied by a suitably ominous green glow.

Can you guess how much power and current are coursing through this thing? Guess again. Lower. Lower.

Under 200mV and 20nA!

Continue reading “How Low-Power Can You Go?”