Swap Your Microwave For A High Voltage Stereo

When building a new project, common wisdom suggests to avoid “reinventing the wheel”, or doing something simple from scratch that’s easily available already. However, if you can build a high-voltage wheel, so to speak, it might be fun just to see what happens. [Dan] decided to reinvent not the wheel, but the speaker, and instead of any conventional build he decided to make one with parts from a microwave and over 6,000 volts.

The circuit he constructed works essentially like a Tesla coil with a modulated audio signal as an input. The build uses the high voltage transformer from the microwave too, which steps the 240 V input up to around 6 kV. To modulate that kind of voltage, [Dan] sends the audio signal through a GU81M vacuum tube with the support of a fleet of high voltage capacitors. The antenna connected to the magnetron does tend to catch on fire somewhere in the middle of each song, so it’s not the safest device around even if the high voltage can be handled properly, but it does work better than expected as a speaker.

If you want a high-voltage speaker that (probably) won’t burn your house down, though, it might be best to stick to a typical Tesla coil. No promises though, since working with high voltages typically doesn’t come with safety guarantees.

Continue reading “Swap Your Microwave For A High Voltage Stereo”

Washing Your Hands With 20,000 Volts

These last few weeks we’ve all been reminded about the importance of washing our hands. It’s not complicated: you just need soap, water, and about 30 seconds worth of effort. In a pinch you can even use an alcohol-based hand sanitizer. But what if there was an even better way of killing bacteria and germs on our hands? One that’s easy, fast, and doesn’t even require you to touch anything. There might be, if you’ve got a high voltage generator laying around.

In his latest video, [Jay Bowles] proposes a novel concept: using the ozone generated by high-voltage corona discharge for rapid and complete hand sterilization. He explains that there’s plenty of research demonstrating the effectiveness of ozone gas a decontamination agent, and since it’s produced in abundance by coronal discharge, the high-voltage generators of the sort he experiments with could double as visually striking hand sanitizers.

Looking to test this theory, [Jay] sets up an experiment using agar plates. He inoculates half of the plates with swabs that he rubbed on his unwashed hands, and then repeats the process after passing his hands over the high-voltage generator for about 15 seconds. The plates were then stored at a relatively constant 23°C (75°F), thanks to the use of his microwave as a makeshift incubator. After 48 hours, the difference between the two sets of plates is pretty striking.

Despite what appears to be the nearly complete eradication of bacteria on his hands after exposing them to the ozone generator, [Jay] is quick to point out that he’s not trying to give out any medical advice with this video. This simple experiment doesn’t cover all forms of bacteria, and he doesn’t have the facilities to test the method against viruses. The safest thing you can do right now is follow the guidelines from agencies like the CDC and just wash your hands the old fashioned way; but the concept outlined here certainly looks worthy of further discussion and experimentation.

Regular viewers of his channel may notice that the device in this video as actually a modified version of the hardware he used to experiment with electrophotography last year.

Continue reading “Washing Your Hands With 20,000 Volts”

Enforce Social Distancing With High Voltage

When getting parts together for a one-off project, we often find ourselves with some leftovers on hand. Most of the time these things go in the junk drawer, but [Brad] aka [AtomicZombie] was working on a project which required parts salvaged from several microwave ovens. That left him with enough surplus components to build a social distancing enforcement tool for the modern age; which will deliver a taser-like shock to anyone which violates the new six-foot rule.

The leftover parts in question were built around a high-voltage capacitor, which [Brad] strapped to his back to hold all of the electronics needed for the six-foot electrified hoop. The generator utilizes the output voltage from two magnetrons, but doesn’t start until the operator enters a code on the front control panel, which is about the only safety device on this entire contraption. To get power to the magnetrons a 12 VDC car battery is used with an inverter to get the required input voltage, and towards the end of the video linked below he shows its effectiveness by setting various objects on fire with it.

While this gag project is unlikely to get any actual use, it’s not like any of us around here need an excuse to play with high voltages. [Brad] is also unlikely to need it either; he lives on a secluded 100-acre homestead and has been featured here for some of the projects he built to make his peaceful life a little easier, like a robotic laundry line, mobile chicken coop, and an electric utility tricycle built from an old truck and motorcycle.

Continue reading “Enforce Social Distancing With High Voltage”

Compact Slayer Exciter For Your High Voltage Needs

Tesla coils are incredible pieces of hardware, but they can be tricky to build. Between the spark gap, capacitors, and finely tuned coils, it’s not exactly a beginners project. Luckily, there’s hope for anyone looking for a less complex way to shoot some sparks: the Slayer Exciter. This device can be thought of as the little cousin to the Tesla coil, and can be used for many of the same high voltage experiments while being far easier to assemble.

Now [Jay Bowles] is obviously no stranger to building his own Tesla coils, but since so many of his fans wanted to see his take on this less complex option, he recently built his own Slayer Exciter. After putting on a few of his own unique touches, the end result looks very promising. It might not be able to throw sparks as far as some of the other creations featured on his YouTube channel, but it’s still impressive for something so simple.

[Jay] uses two transistors in parallel for reliability
When we say simple, we mean it. Building a bare-bones Slayer Exciter takes only takes five components: the two coils, a transistor, a diode, and a resistor. For this build, power is provided by a trio of rechargeable 9 V batteries in the base of the unit which can be easily swapped out as needed.

In the video, [Jay] does a great job explaining and illustrating how this basic circuit creates exceptionally high frequency energy. In fact, the frequency is so high that the human ear can’t hear it; unfortunate news for fans of the Tesla coil’s characteristic buzz.

Generally speaking Slayer Exciters would have the same sort of vertical coils that you’d see used on a traditional Tesla coil, but in this case, [Jay] has swapped that out for a pancake coil held in the upper level of the device. This makes for a very compact unit that would be perfect for your desk, if it wasn’t for the fact that the arcs produced by this gadget are hot enough to instantly vaporize human skin. Just something to keep in mind.

We’ve seen Slayer builds in the past, but none as well designed as this one. Incidentally, if you’re wondering about the array of neon indicator lights that [Jay] uses to visualize the electrical field, we covered that project as well.

Continue reading “Compact Slayer Exciter For Your High Voltage Needs”

A DIY Stun Gun You Probably Shouldn’t Build

In these troubled times, when a trip to the grocery store could turn into a brawl over toilet paper, you might be inclined to build yourself a low-cost electroshock weapon. Or at least, that’s what [Alex Zidros] did. We don’t necessarily recommend you follow in his footsteps, and we’re certainly not advocating testing it on a loved one. We just bring you this information, you have to decide what you do with it.

This is what peer pressure looks like.

So what does it take to build an improvised stun gun? Not a whole lot, it turns out. As you might have guessed, the star of the show is a high voltage transformer which supposedly puts out 400 kV. Just looking at it (and the price) we’re going to go out on a limb and say the performance specs are way overrated, but in this case that might actually be a good thing.

Beyond the transformer, there’s a simple 9 V battery holder and electrodes made from the prongs of a hacked up travel adapter. To deliver the lightning, [Alex] is using a pink arcade button. Just because you might be fighting for your life doesn’t mean you can’t have a little fun, right? Everything is packed into a simple 3D printed enclosure, but you could easily replace that with any suitably sized box. Something made out of wood might be a good idea, considering.

If you’d like to see another person shocked by a cobbled together high-voltage weapon, and potentially even learn something in the process, check out the “tutorial” video [Mehdi Sadaghdar] did back in 2014. We did mention you definitely shouldn’t do this at home, right?

Visualizing Energy Fields With A Neon Bulb Array

Everyone knows that one of the coolest things to do with a Tesla coil is to light up neon or fluorescent tubes at a distance. It’s an easy and very visual way to conceptualize how much energy is being pumped out, making it a favorite trick at science museums all over the world. But what would it look like if you took that same concept and increased the resolution? Replace that single large tube with an array of smaller ones. That’s exactly what [Jay Bowles] did in his latest video, and the results are impressive to say the least.

From a hardware standpoint, it doesn’t get much simpler. [Jay] knew from experience that if you bring a small neon indicator close to a Tesla coil, it will start to glow when approximately 80 volts is going through it. The higher the voltage, the brighter the glow. So he took 100 of these little neon bulbs and arranged them in a 10×10 grid on a piece of perfboard. There’s nothing fancy around the backside either, just all the legs wired up in parallel.

When [Jay] brings the device close to his various high-voltage toys, the neon bulbs still glow like they did before. But the trick is, they don’t all glow at the same brightness or time. As the panel is moved around, the user can actually see the shape and relative strength of the field by looking at the “picture” created by the neon bulbs.

The device isn’t just a cool visual either, it has legitimate applications. In the video, [Jay] explains how it allowed him to observe an anomalous energy field that collapsed when he touched the base of his recently completed Tesla coil; an indication that there was a grounding issue. He’s also observed some dead spots while using what he’s come to call his “High-Voltage Lite-Bright” and is interested in hearing possible explanations for what he’s seeing.

We’ve been fans of [Jay] and the impressively produced videos he makes about his high-voltage projects for years now, and we’re always excited when he’s got something new. Most hardware hackers start getting sweaty palms once the meter starts indicating more than about 24 VDC, so we’ve got a lot of respect for anyone who can build this kind of hardware and effectively communicate how it works to others.

Continue reading “Visualizing Energy Fields With A Neon Bulb Array”

Pavlok Gets A Literally Shocking Teardown

Apparently, there is a wrist-mounted device that delivers electric shocks to the wearer when it receives the appropriate command over Bluetooth. No, it’s not part of some kind of house arrest program. If you can believe it, the gadget is actually intended to help break bad habits or wake up exceptionally deep sleepers. We don’t know which of those problems [Becky Stern] has, but we’re glad to see she decided to take hers apart before the 21st century self-flagellation started.

Called the Pavlok and available for $180 USD from various online retailers, the device looks like a chunky fitness tracker. But in place of the screen that would show you how many steps you’ve taken or your current heart rate, there’s a lighting bolt button that you can press when you want to shock yourself. With the smartphone application, you can control the device remotely with a handy desktop widget that allows you to select the intensity of the shock. No, we aren’t making any of this up. Check out the video after the break to see it in action.

When [Becky] tried to take the Pavlok apart, she found that it was nearly impossible to handle it without inadvertently triggering a shock. So until she could get the case open and physically disconnect the battery, all she could do was turn the intensity down in the application and work through the occasional jolts from the device. We can only hope that more devices don’t adopt a similar sense of self-preservation.

Once inside she found mainly the same kind of hardware you’d expect in a standard, non-masochistic, fitness wearable. There’s a nRF52832 Bluetooth SoC, a MMA8451Q accelerometer, a PCF85063A I2C RTC, and a FXAS21002C gyroscope. What you’re somewhat less likely to find inside your FitBit however is the LPR6235 coupled inductor and beefy capacitors which are used to build up a high-voltage charge from the standard 3.7 V LiPo battery.

We’ve been very interested in the recent projects which are creating custom firmwares for commercially available fitness wearables, as it could be an express route to a hacker-friendly smartwatch. While the Pavlok has some compelling hardware, and the programming header [Becky] identified looks interesting, we don’t like the idea of being one misplaced if statement away from riding the lightning.

Continue reading “Pavlok Gets A Literally Shocking Teardown”