Battery Analyzer Puts Alkaline Cells To The Test

We know, we know. Generally speaking, you should try and switch your household devices over to rechargeable cells rather than using disposable alkaline batteries. But while they might seem increasingly quaint in the lithium-ion era, features such as a long shelf life make it worth keeping a pack of disposables around. So which ones should you buy? That’s what [Moragor] wanted to find out with his personal battery analyzer.

Designed as a shield for the Arduino Mega 2560, the analyzer combines a small programmable electronic load with a INA219 current sensor, OLED display, and SD card reader. The user selects the cutoff voltage and discharge rate before the test begins, and once it’s running, data is collected every second and saved to the SD card for later analysis. Once the battery voltage reaches the predetermined value, the test is over and you’re ready to put a new cell through its paces.

After testing 27 different brands of batteries, [Moragor] tabulated all the data and produced some helpful charts to illustrate the results. With few exceptions, the performance level for most of the batteries was remarkably similar. If anything, the test seemed to show that higher tier batteries from companies like Duracell and Energizer actually performed slightly worse than the mid-range offerings. Perhaps the biggest surprise is that, when the per-cell cost was factored in, the local cheapo batteries provided a better value than anything else in the test.

While the selection of battery brands may be different from where you live, the data [Moragor] collected is still a fascinating even if you don’t recognize some of the names on the chart. Of particular note is the confirmation that lithium batteries handily outperformed any of the Alkaline cells tested when it came to high-drain applications. We’d still rather they came in rechargeable form, but at least it’s a step in the right direction.

Testing Lithium Cells For Use With A Hybrid Car

[Mikey] got a real deal on some A123 Pouch Cells. These are large Lithium cells that tolerate 100A discharge and 50A recharge currents, with 20 AH of life off of one charge. He’s been doing a bunch of testing to find out if the cells can go into an expandable battery pack and be made for use with hybrid cars.

We just looked in on a battery tester used for solar power car arrays. This is a similar situation except [Mikey] is focusing on the test data, rather than the apparatus. The link above is a collection of his notes from testing. Start reading at the bottom of the page up to get the chronology right. He starts to zero in on the most efficient charging methods. Immediately he’s hit with a big need for cooling as the cells take no time to pass 100 degree Fahrenheit. He continues testing with heat sink and fan, and even brings a thermal imaging camera to help with the design.

[Thanks Chris]

Battery Capacity Tester


[Moris_zen] built a device to accurately measure the capacity of batteries. He needed to have an accurate measurement for the batteries he uses in a RC airplane. Knowing the discharge time allows him to fly the friendly skies while avoiding crashes from lost communications.

He based the tester around the Arduino platform. Instead of using a pre-built Arduino board he referenced the open source schematics and built the device from components to fit his needs. His solution automatically detects the battery type (Lithium-Ion, Nickel Metal Hydride, etc) based on voltage when the battery is added to the circuit. It then uses a 2.2 Ohm resistor and ADC measurements to take the battery through a discharge cycle. A character display shows status information with the ability to track discharge information using a computer to graph the data.

Apart from flashing an LED this was his first Arduino project. It’s a great use of the platform and much more automatic than other solutions we’ve covered.