DIY Pulse Oximeter

This pulse oximeter turned out very nicely. It is based around a Freescale microcontroller and detects pulse as well as oxygen saturation in your blood. The sensor is made of two wood pieces and allows two wavelengths of light to be shined through your finger. A sensor picks up the light on the other side of your stubby digit and the readings are compared to calculate saturation. Check out the finished project after the break.

We saw an Arduino-based oximeter a few months ago. These kind biometric hacks are rare around here. If you’ve got a well documented project don’t forget to tell us about it.

Continue reading “DIY Pulse Oximeter”

Pulse Oximeter

[youtube=http://www.youtube.com/watch?v=GdN5IRVJOXI]

[Mike] is building his own Pulse Oximeter which uses light to measure the oxygen saturation in blood. One collateral benefit of this measurement is that pulse rate can be calculated from the same data. The parts used for the detector include a red LED, infrared LED, and a TSL230R light intensity measuring chip. As explained in the video above, each LED is shined through the tip of your finger and onto the light sensor. The IR LED is used as a baseline and compared to the red LED, which has some of its intensity absorbed by the red blood in your finger. This is a pretty approachable biometric concept so you may want to start here before moving on to more involved biometric interfaces.

[Thanks Russ]

UAV Medical Couriers

We’re skeptical about most technology that’s designed to help remote villages (yes, even that one), but these new UAV medical couriers look like a great idea. The turn around time for medical sample analysis in remote South African villages can be excruciating. A team of engineers have attempted to adapt two different unmanned aerial vehicles for transport of medical samples. These could be either blood or saliva that needs testing. Test results would be relayed via phone as they are now, but the initial transport time would be much faster. The larger of the two UAVs can carry up to 500g; that’s enough to haul two units of blood for transfusion. The UAVs can be launched by hand and can survive winds up to 45kph. They fly their preprogrammed routes autonomously and don’t require any operator intervention. The team has flown two successful trials and is waiting for approval from the South African Civil Aviation Authority. For safety, they’re only transporting samples that can be sterilized before flight. New Scientist has a short video after the break. Continue reading “UAV Medical Couriers”