Just How Is Voyager 2 Going To Sort Out Its Dish Then?

Anybody who has set up a satellite TV antenna will tell you that alignment is critical when picking up a signal from space. With a satellite dish it’s a straightforward task to tweak the position, but what happens if the dish in question is out beyond the edge of the Solar System?

We told you a few days ago about this exact issue currently facing Voyager 2, but we’re guessing Hackaday readers will want to know a little bit more about how a 50+ year old spacecraft so far from home can still sort out its antenna. The answer lies in NASA Technical Report 32-1559, Digital Canopus Tracker from 1972, which describes the instrument that notes the position of the star Canopus, which along with that of the Sun it can use to calculate the antenna bearing to reach Earth. The report makes for fascinating reading, as it describes how early-1970s technology was used to spot the star by its specific intensity and then keep it in its sights. It’s an extremely accessible design, as even the part numbers are an older version of the familiar 74 logic.

So somewhere out there in interstellar space beyond the boundary of the Solar System is a card frame full of 74 logic that’s been quietly keeping an eye on a star since the early 1970s, and the engineers from those far-off days at JPL are about to save the bacon of the current generation at NASA with their work. We hope that there are some old guys in Pasadena right now with a spring in their step.

Read our coverage of the story here.

Voyager Command Glitch Causes Unplanned Pause In Communications

Important safety tip: When you’re sending commands to the second-most-distant space probe ever launched, make really, really sure that what you send isn’t going to cause any problems.

According to NASA, that’s just what happened to Voyager 2 last week, when uplinked commands unexpectedly shifted the 46-year-old spacecraft’s orientation by just a couple of degrees. Of course, at a distance of nearly 20 billion kilometers, even fractions of a degree can make a huge difference, especially since the spacecraft’s high-gain antenna (HGA) is set up for very narrow beamwidths; 2.3° on the S-band channel, and a razor-thin 0.5° on the X-band side. That means that communications between the spacecraft and the Canberra Deep Space Communication Complex — the only station capable of talking to Voyager 2 now that it has dipped so far below the plane of the ecliptic — are on pause until the spacecraft is reoriented.

Luckily, NASA considered this as a possibility and built safety routines into Voyager‘s program that will hopefully get it back on track. The program uses the onboard star tracker to get a fix on the bright star Canopus, and from there figures out which way the spacecraft needs to move to get pointed back at Earth. The contingency program runs automatically several times a year, just in case something like this happens.

That’s the good news; the bad news is that the program won’t run again until October 15. While that’s really not that far away, mission controllers will no doubt find it an agonizingly long time to be incommunicado. And while NASA is outwardly confident that communications will be restored, there’s no way to be sure until we actually get to October and see what happens. Fingers crossed.