Batteries Not Included: Meet The Swiss Réglette!

Over on YouTube, [The Modern Rogue] created an interesting video showing a slide-rule-like encryption device called the Réglette. This was a hardware implementation of a Vigenère-like Cipher, technically referred to as a manual polyalphabetic substitution cipher. The device requires no batteries, is fully waterproof, daylight readable and easy to pack, making it really useful if you find yourself in a muddy trench in the middle of winter during a world war. Obviously, because it’s a slide rule.

Anyway, so how does this cipher work? Well, the ‘polyalphabetic’ bit infers the need for a key phrase, which is indeed the first thing all parties need to agree upon. Secondly, a number is required as a reference point. As you can see from the video, the sliding part of the device has letters of the alphabet, as well as numbers and a special symbol. The body has two series of numbers, with the same spacing as the central, sliding part. A second copy of the sliding part is also needed to slide in behind the first unit. This second copy is neatly stowed below the body during storage.

With each message letter, you lookup the corresponding cipher text number, then shift the slider to the next key phrase letter.

The cipher works by first aligning the starting letter of the (variable-length) key phrase with the reference number. Next, encode the first symbol from the cleartext message (the thing you want to encrypt). You simply look up the letter on the slide and read off either of the numbers next to it. Randomly selecting the left or right set adds an extra bit of strength to the code due to increased entropy. The number is the first symbol for your ciphertext (the thing you want to transmit to the receiver). Next, you move on to the next symbol in the cleartext message. Align the following letter of the key phrase with the reference number, look up the corresponding letter in the message, and transmit the following number onwards. When you run out of key phrase letters, you loop back to the start, and the cycle repeats.

The special symbol we mentioned earlier is not really a ‘blank’; it is a control symbol used to retransmit a new reference number with the existing setup. To change the reference number, the blank character is encoded and sent, followed by the latest reference number. When the blank symbol is received at the other end, the following code is used as the reference number, and the key phrase position is reset to point back to the first letter, restarting the cycle anew. Simple, yes. Effective? Well, not really by modern standards, but at the time of limited computing power (i.e. pen and paper, perhaps a mechanical calculator at best), it would have been sufficient for some uses for a couple of decades.

Why is this Vigenère-like? Well, an actual Vigenère cipher maps letters to other letters, but the Réglette uses numbers, randomly selected, adding entropy, as well as the control code to allow changing the cypher parameter mid-message. This makes it harder to attack; the original Vigenère was considered first-rate cryptography for centuries.

If you’d like to play along at home and learn some other simple ciphers, check this out. Kings and Queens of old frequently used cryptography, including the famous Queen Mary of Scots. Of course, we simply can’t close out an article on cryptography without mentioning the Enigma machine. Here’s one built out of Meccano!

Continue reading “Batteries Not Included: Meet The Swiss Réglette!”

Decoding A 350 Year Old Coded Message

Usually, a story about hacking a coded message will have some computer element or, at least, a machine like an Enigma. But [Ruth Selman] recently posted a challenge asking if anyone could decrypt an English diplomatic message sent from France in 1670. Turns out, two teams managed it. Well, more accurately, one team of three people managed it, plus another lone cryptographer. If you want to try decoding it yourself, you might want to read [Ruth’s] first post and take a shot at it before reading on further here: there are spoilers below.

No computers or machines were likely used to create the message, although we imagine the codebreakers may have had some mechanized aids. Still, it takes human intuition to pull something like this off. One trick used by the text was the inclusion of letters meant to be thrown out. Because there were an odd number of Qs, and many of them were near the right margin, there was a suspicion that the Qs indicated a throw-away character and an end of line.

Continue reading “Decoding A 350 Year Old Coded Message”

A pair of PCBs with OLED character displays, showing a simple encryption program

The CryptMaster 2001 Provides Basic Lessons In Cryptography

Sending secret messages to your friends is fun, but today it’s so simple that you don’t even notice it anymore: practically any serious messaging system features encryption of some sort. To teach his kids about cryptography, [Michal Zalewski] therefore decided to bring the topic to life by building a handheld encryption system, called the CryptMaster 2001.

The system consists of an identical pair of hand-held devices built on prototype PCBs. A standard 16×2 character OLED display is used as an output device, which generates the ciphertext in real time as the plaintext is entered character by character through a rotary encoder. An ATmega328P manages the input and output routines and performs the encryption.

For ease of use, [Michal] wanted to use a reciprocal cipher, meaning one that uses the same operation for encryption and decryption. Trivial ciphers like ROT13 would be a bit too easy to crack, so he devised a slightly more complex system where each character in the input is encoded using a separate rearranged alphabet – a basic polyalphabetic substitution cipher.

[Michal]’s kids apparently had some good fun with the CryptMaster 2001, until his eldest son managed to reverse-engineer the encryption method, enabling him to decode messages without having access to one of the devices. This made the project a pretty decent lesson about the limits of basic cryptography: simply swapping letters doesn’t present a real challenge to anyone. Luckily, much more secure methods are available, even if you’re only using pen and paper.

Quantum Computing And The End Of Encryption

Quantum computers stand a good chance of changing the face computing, and that goes double for encryption. For encryption methods that rely on the fact that brute-forcing the key takes too long with classical computers, quantum computing seems like its logical nemesis.

For instance, the mathematical problem that lies at the heart of RSA and other public-key encryption schemes is factoring a product of two prime numbers. Searching for the right pair using classical methods takes approximately forever, but Shor’s algorithm can be used on a suitable quantum computer to do the required factorization of integers in almost no time.

When quantum computers become capable enough, the threat to a lot of our encrypted communication is a real one. If one can no longer rely on simply making the brute-forcing of a decryption computationally heavy, all of today’s public-key encryption algorithms are essentially useless. This is the doomsday scenario, but how close are we to this actually happening, and what can be done?

Continue reading “Quantum Computing And The End Of Encryption”