A vertically-mounted black disk with a concentric pattern of reflective disks is illuminated under a red light. A large number of copper wires run away from the the disk to a breadboard.

Deforming A Mirror For Adaptive Optics

As frustrating as having an atmosphere can be for physicists, it’s just as bad for astronomers, who have to deal with clouds, atmospheric absorption of certain wavelengths, and other irritations. One of the less obvious effects is the distortion caused by air at different temperatures turbulently mixing. To correct for this, some larger observatories use a laser to create an artificial star in the upper atmosphere, observe how this appears distorted, then use shape-changing mirrors to correct the aberration. The physical heart of such a system is a deformable mirror, the component which [Huygens Optics] made in his latest video.

The deformable mirror is made out of a rigid backplate with an array of linear actuators between it and the thin sheet of quartz glass, which forms the mirror’s face. Glass might seem too rigid to flex under the tenth of a Newton that the actuators could apply, but everything is flexible when you can measure precisely enough. Under an interferometer, the glass visibly flexed when squeezed by hand, and the actuators created enough deformation for optical purposes. The actuators are made out of copper wire coils beneath magnets glued to the glass face, so that by varying the polarity and strength of current through the coils, they can push and pull the mirror with adjustable force. Flexible silicone pillars run through the centers of the coils and hold each magnet to the backplate.

A square wave driven across one of the actuators made the mirror act like a speaker and produce an audible tone, so they were clearly capable of deforming the mirror, but a Fizeau interferometer gave more quantitative measurements. The first iteration clearly worked, and could alter the concavity, tilt, and coma of an incoming light wavefront, but adjacent actuators would cancel each other out if they acted in opposite directions. To give him more control, [Huygens Optics] replaced the glass frontplate with a thinner sheet of glass-ceramic, such as he’s used before, which let actuators oppose their neighbors and shape the mirror in more complex ways. For example, the center of the mirror could have a convex shape, while the rest was concave.

This isn’t [Huygens Optics]’s first time building a deformable mirror, but this is a significant step forward in precision. If you don’t need such high precision, you can also use controlled thermal expansion to shape a mirror. If, on the other hand, you take it to the higher-performance extreme, you can take very high-resolution pictures of the sun.

A MetaSense joystick

3D-Printing Complex Sensors And Controls With Metamaterials

If you’ve got a mechatronic project in mind, a 3D printer can be a big help. Gears, levers, adapters, enclosures — if you can dream it up, a 3D printer can probably churn out a useful part for you. But what about more complicated parts, like sensors and user-input devices? Surely you’ll always be stuck buying stuff like that from a commercial supplier. Right?

Maybe not, if a new 3D-printed metamaterial method out of MIT gets any traction. The project is called “MetaSense” and seeks to make 3D-printed compliant structures that have built-in elements to sense their deformation. According to [Cedric Honnet], MetaSense structures are based on a grid of shear cells, printed from flexible filament. Some of the shear cells are simply structural, but some have opposing walls printed from a conductive filament material. These form a capacitor whose value changes as the distance between the plates and their orientation to each other change when the structure is deformed.

The video below shows some simple examples of monolithic MetaSense structures, like switches, accelerometers, and even a complete joystick, all printed with a multimaterial printer. Designing these structures is made easier by software that the MetaSense team developed which models the deformation of a structure and automatically selects the best location for conductive cells to be added. The full documentation for the project has some interesting future directions, including monolithic printed actuators.

Continue reading “3D-Printing Complex Sensors And Controls With Metamaterials”

Measuring The Stiffness Of 3D-Printed Parts

How do you choose filament when you want strong 3D-printed parts? Like most of us, you probably take a guess, or just use what you have on hand and hope for the best. But armed with a little knowledge on strength of materials, you might be able to make a more educated assessment.

To help you further your armchair mechanical engineer ambitions, [Stefan] has thoughtfully put together this video of tests he conducted to determine the stiffness of common 3D-printing plastics. He’s quick to point out that strength and stiffness are not the same thing, and that stiffness might be more important than strength in some applications. Strength measures how much stress can be applied to an element before it deforms, while stiffness describes how well an element returns to its original state after being stressed. The test rig [Stefan] built for the video analyzes stiffness by measuring the deflection of printed parts under increasing loads. Graphing the applied force versus the deflection gives an indication of the rigidity of the part, while taking the thickness of the material into account yields the bending modulus. The results are not terribly surprising, with polypropylene being the floppiest material and exotic composite filaments, like glass fiber or even “nanodiamond” reinforced PLA coming out as the stiffest. PLA, the workhorse filament, comes in around the middle of the pack.

[Stefan] did some great work here, but as he points out, in the final analysis it almost doesn’t matter what the stiffness and strength of the filament are since you can easily change your design and add more material where it’s needed. That only works up to a point, of course, but it’s one of the many advantages of additive manufacturing.

Continue reading “Measuring The Stiffness Of 3D-Printed Parts”