LaForge Demystifies ESIM

This talk at Chaos Communications Camp 2023 is probably everything you want to know about eSIM technology, in just under an hour. And it’s surprisingly complicated. If you’ve never dug into SIMs before, you should check out our intro to eSIMs first to get your feet wet, but once you’re done, come back and watch [LaForge]’s talk.

In short, the “e” stands for “embedded”, and the eSIM is a self-contained computer that virtualises everything that goes on inside your plain-old SIM card and more. All of the secrets that used to be in a SIM card are stored as data on an eSIM. This flexibility means that there are three different types of eSIM, for machine-to-machine, consumer, and IoT purposes. Because the secret data inside the eSIM is in the end just data, it needs to be cryptographically signed, and the relevant difference between the three flavors boils down to three different chains of trust.

Whichever eSIM you use, it has to be signed by the GSM Alliance at the end of the day, and that takes up the bulk of the talk time in the end, and in the excellent Q&A period at the end where the hackers who’ve obviously been listening hard start trying to poke holes in the authentication chain. If you’re into device security, or telephony, or both, this talk will open your eyes to a whole new, tremendously complex, playground.

The Rise And (Eventual) Fall Of The SIM Card

There are few devices that better exemplify the breakneck pace of modern technical advancement than the mobile phone. In the span of just a decade, we went from flip phones and polyphonic ringtones to full-fledged mobile computers with quad-core processors and gigabytes of memory.

While rapid advancements in computational power are of course nothing new, the evolution of mobile devices is something altogether different. The Razr V3 of 2003 and the Nexus 5 of 2013 are so vastly different that it’s hard to reconcile the fact they were (at least ostensibly) designed to serve the same purpose — with everything from their basic physical layout to the way the user interacts with them having undergone dramatic changes in the intervening years. Even the network technology they use to facilitate voice and data communication are different.

Two phones, a decade apart.

Yet, there’s at least one component they share: the lowly SIM card. In fact, if you don’t mind trimming a bit of unnecessary plastic away, you could pull the SIM out of the Razr and slap it into the Nexus 5 without a problem. It doesn’t matter that the latter phone wasn’t even a twinkling in Google’s eye when the card was made, the nature of the SIM card means compatibility is a given.

Indeed there’s every reason to believe that very same card, now 20 years old, could be installed in any number of phones on the market today. Although, once again, some minor surgery would be required to pare it down to size.

Such is the beauty of the SIM, or Subscriber Identity Module. It allows you to easily transfer your cellular service from one phone to another, with little regard to the age or manufacturer of the device, and generally without even having to inform your carrier of the swap. It’s a simple concept that has served us well for almost as long as cellular telephones have existed, and separates the phone from the phone contract.

So naturally, there’s mounting pressure in the industry to screw it up.

Continue reading “The Rise And (Eventual) Fall Of The SIM Card”

36C3: SIM Card Technology From A To Z

SIM cards are all around us, and with the continuing growth of the Internet of Things, spawning technologies like NB-IoT, this might as well be very literal soon. But what do we really know about them, their internal structure, and their communication protocols? And by extension, their security? To shine some light on these questions, open source and mobile device titan [LaForge] gave an introductory talk about SIM card technologies at the 36C3 in Leipzig, Germany.

Starting with a brief history lesson on the early days of cellular networks based on the German C-Netz, and the origin of the SIM card itself, [LaForge] goes through the main specification and technology parts of each following generation from 2G to 5G. Covering the physical basics, I/O interfaces, communication protocols, and the file system located on the SIM card, you’ll get the answer to “what on Earth is PIN2 for?” along the way.

Of course, a talk like this, on a CCC event, wouldn’t be complete without a deep and critical look at the security side as well. Considering how over-the-air updates on both software and — thanks to mostly running Java nowadays — feature side are more and more common, there certainly is something to look at.

Continue reading “36C3: SIM Card Technology From A To Z”