Wireshark screenshot with QCSuper-produced packets streaming into it; QCSuper script running in an adjacent terminal

Turn Your Qualcomm Phone Or Modem Into Cellular Sniffer

If your thought repurposing DVB-T dongles for generic software defined radio (SDR) use was cool, wait until you see QCSuper, a project that re-purposes phones and modems to capture raw 2G/3G/4G/5G. You have to have a Qualcomm-based device, it has to either run rooted Android or be a USB modem, but once you find one in your drawers, you can get a steady stream of packets straight into your Wireshark window. No more expensive SDR requirement for getting into cellular sniffing – at least, not unless you are debugging some seriously low-level issues.

It appears there’s a Qualcomm specific diagnostic port you can access over USB, that this software can make use of. The 5G capture support is currently situational, but 2G/3G/4G capabilities seem to be pretty stable. And there’s a good few devices in the “successfully tested” list – given the way this software functions, chances are, your device will work! Remember to report whether it does or doesn’t, of course. Also, the project is seriously rich on instructions – whether you’re using Linux or Windows, it appears you won’t be left alone debugging any problems you might encounter.

This is a receive-only project, so, legally, you are most likely allowed to have fun — at least, it would be pretty complicated to detect that you are, unlike with transmit-capable setups. Qualcomm devices have pretty much permeated our lives, with Qualcomm chips nowadays used even in the ever-present SimCom modules, like the modems used in the PinePhone. Wondering what a sniffer could be useful for? Well, for one, if you ever need to debug a 4G base station you’ve just set up, completely legally, of course.

2G Or Not 2G, That Is The Question

Since the very early 1990s, we have become used to ubiquitous digital mobile phone coverage for both voice and data. Such has been their success that they have for many users entirely supplanted the landline phone, and increasingly their voice functionality has become secondary to their provision of an always-on internet connection. With the 5G connections that are now the pinnacle of mobile connectivity we’re on the fourth generation of digital networks, with the earlier so-called “1G” networks using an analogue connection being the first. As consumers have over time migrated to the newer and faster mobile network standards then, the usage of the older versions has reduced to the point at which carriers are starting to turn them off. Those 2G networks from the 1990s and the 2000s-era 3G networks which supplanted them are now expensive to maintain, consuming energy and RF spectrum as they do, while generating precious little customer revenue.

Tech From When Any Phone That Wasn’t A Brick Was Cool

A 1990s Motorola phone
If this is your phone, you may be in trouble. Digitalsignal, CC BY-SA 3.0.

All this sounds like a natural progression of technology which might raise few concerns, in the same way that nobody really noticed the final demise of the old analogue systems. There should be little fuss at the 2G and 3G turn-off. But the success of these networks seems to in this case be their undoing, as despite their shutdown being on the cards now for years, there remain many devices still using them.

There can’t be many consumers still using an early-2000s Motorola Flip as their daily driver, but the proliferation of remotely connected IoT devices means that there are still many millions of 2G and 3G modems using those networks. This presents a major problem for network operators, utilities, and other industrial customers, and raises one or two questions here at Hackaday which we’re wondering whether our readers could shed some light on. Who is still using, or trying to use, 2G and 3G networks, why do they have to be turned off in the first place, and what if any alternatives are there when no 4G or 5G coverage is available? Continue reading “2G Or Not 2G, That Is The Question”

Open-Source Cell Phone Based On ESP32

Over the past decade or so, smartphones have exploded in popularity and seamlessly integrated themselves into nearly every aspect of most people’s lives. Although that comes with a few downsides as well, with plenty of people feeling that the smart phone makes it a little too easy to waste time and looking to switch to something simpler, like an older-style flip phone. If this style of phone is more your speed, take a look at this DIY cell phone which takes care of everything a phone really needs to do. (Google Translate from French)

The phone uses an ESP32 at its core, with a SIM800L GSM modem to interact with the cell network, including retrieving the system time. A small battery is included as well as all of the support circuitry for charging it as well as a USB interface that can communicate to a PC. The operating system for the phone is built from the ground up as well, with a touch screen interface allowing the user to make phone calls, send text messages, store contacts, and a few other basic features. There’s also a GPS application though, allowing the phone to know basic location information.

Another perk of this device is that its creator, [Gabriel], made the design schematics, print files for the case, and the operating system software completely open source for anyone to build this phone on their own. Everything is available on the project’s GitHub page. It’s a fairly remarkable achievement, especially considering [Gabriel] is only 16. And, if you’re not one to eschew modern smart phone technology there are some DIY smart phones available to build as well.

Thanks to [come2] for the tip!

36C3: SIM Card Technology From A To Z

SIM cards are all around us, and with the continuing growth of the Internet of Things, spawning technologies like NB-IoT, this might as well be very literal soon. But what do we really know about them, their internal structure, and their communication protocols? And by extension, their security? To shine some light on these questions, open source and mobile device titan [LaForge] gave an introductory talk about SIM card technologies at the 36C3 in Leipzig, Germany.

Starting with a brief history lesson on the early days of cellular networks based on the German C-Netz, and the origin of the SIM card itself, [LaForge] goes through the main specification and technology parts of each following generation from 2G to 5G. Covering the physical basics, I/O interfaces, communication protocols, and the file system located on the SIM card, you’ll get the answer to “what on Earth is PIN2 for?” along the way.

Of course, a talk like this, on a CCC event, wouldn’t be complete without a deep and critical look at the security side as well. Considering how over-the-air updates on both software and — thanks to mostly running Java nowadays — feature side are more and more common, there certainly is something to look at.

Continue reading “36C3: SIM Card Technology From A To Z”

New Part Day: The $15 ESP32 With Cellular

Cruise around AliExpress for long enough and you’ll find some interesting new hardware. The latest is the TTGO T-Call, an ESP32 breakout board that also has a cellular modem. Yes, it’s only a 2G modem, but that still works in a lot of places, and the whole thing is $15.

On board the TTGO T-Cal is the ESP-WROVER-B, the same module you all know and love that features a dual-core ESP running at 240 MHz with 4 MB of Flash and 8 MB of SRAM. Add to this WiFi and Bluetooth, and you have a capable microcontroller platform. Of note is that this board includes a USB-C port, ostensibly wired so that it behaves like a normal USB micro port. That’s neat, 2019 is the year USB C connectors became cheaper than USB micro connectors.

In addition to the ESP32 module, there’s also cellular in the form of a SIM800 module. This module has been around for a while and used in many, many cellular-connected projects and products like the ZeroPhone. This module is only a 2G module, and that’ll be going away shortly (if not already) in built-up areas, but this can serve as a building block for modules that have more Gees than a 2G module. That said, if you’re looking for a WiFi and cellular bridge for fifteen bucks, you could do a lot worse for a lot more money.

Old Phone, New Remote Switch

With mobile phones now ubiquitous for the masses in much of the world for over two decades, something a lot of readers will be familiar with is a drawer full of their past devices. Alongside the older smartphone you’ll have a couple of feature phones, and probably at the bottom a Nokia candybar or a Motorola flip phone. There have been various attempts over the years to make use of the computing power the more recent ones contain through using their smartphone operating systems, but the older devices remain relatively useless.

[Vishwasnavada] has a neat plan though, using an ancient phone as a remote trigger device, by interfacing it with an Arduino. There are many ways this could be achieved depending on the model of the phone in question, but one thing common to nearly all devices is a vibration motor. Removing the motor and taking its power line to a GPIO allows the Arduino to sense when the phone is ringing. The idea then is that a call can be placed to the phone which is not picked up, but because it triggers the vibration motor it can be used to make the microcontroller do something remotely. A hack with limited capabilities then, but one that is cheap and simple, uses a recycled device, and should work almost anywhere populated on the planet given the global reach of 2G networks.

This isn’t the first respin of a classic Nokia we’ve brought you, they will also talk data.

Unlock & Talk: Open Source Bootloader & Modem

During the early years of cell phones, lifespan was mainly limited by hardware (buttons wearing out, dropping phones, or water damage), software is a primary reason that phones are replaced today. Upgrades are often prompted by dissatisfaction with a slow phone, or manufacturers simply stopping updates to phone software after a few years at best. [Oliver Smith] and the postmarketOS project are working to fix the update problem, and have begun making progress on loading custom software onto cellphone processors and controlling their cellular modems. Continue reading “Unlock & Talk: Open Source Bootloader & Modem”