Remote ADS-B Install Listens In On All The Aircraft Transmissions With RTL-SDR Trio, Phones Home On Cellular

When installing almost any kind of radio gear, the three factors that matter most are the same as in real estate: location, location, location. An unobstructed location at the highest possible elevation gives the antenna the furthest radio horizon as well as the biggest bang for the installation buck. But remote installations create problems, too, particularly with maintenance, which can be a chore.

So when [tsimota] got a chance to relocate one of his Automatic Dependent Surveillance-Broadcast (ADS-B) receivers to a remote site, he made sure the remote gear was as bulletproof as possible. In a detailed write up with a ton of pictures, [tsimota] shows the impressive amount of effort he put into the build.

The system has a Raspberry Pi 3 with solid-state drive running the ADS-B software, a powered USB hub for three separate RTL-SDR dongles for various aircraft monitoring channels, a remote FlightAware dongle to monitor ADS-B, and both internal and external temperature sensors. Everything is snuggled into a weatherproof case that has filtered ventilation fans to keep things cool, and even sports a magnetic reed tamper switch to let him know if the box is opened. An LTE modem pipes the data back to the Inter, a GSM-controlled outlet allows remote reboots, and a UPS keeps the whole thing running if the power blips atop the 15-m building the system now lives on.

Nobody appreciates a quality remote installation as much as we do, and this is a great example of doing it right. Our only quibble would be the use of a breadboard for the sensors, but in a low-vibration location, it should work fine. If you’ve got the itch to build an ADS-B ground station but don’t want to jump in with both feet quite yet, this beginner’s guide from a few years back is a great place to start.

Tracking Nearly Every Aircraft With A Raspberry Pi

FlightAware is the premier site for live, real-time tracking of aircraft around the world, and for the last year or so, Raspberry Pi owners have been contributing to the FlightAware network by detecting aircraft flying overhead and sending that data to the FlightAware servers.

Until now, these volunteers have used Raspis and software defined radio modules to listen in on ADS-B messages transmitted from aircraft. With FlightAware’s new update to PiAware, their Raspberry Pi flight tracking software, Mode S transponders can also be detected and added to the FlightAware network.

Last year, FlightAware announced anyone with a Raspberry Pi, a software defined radio module, and an Internet connection would earn a free FlightAware enterprise account for listening to ADS-B transmitters flying overhead and sending that information to the FlightAware servers. ADS-B is a relatively new requirement for aviators that transmits the plane’s identification, GPS coordinates, altitude, and speed to controllers and anyone else who would like to know who’s flying overhead.

Mode S transponders, on the other hand, are older technology that simply transmits the call sign of an aircraft. There’s no GPS information or altitude information transmitted, but through some clever multilateration in the new PiAware release these transponders and planes can now be tracked.

To get the location of these transponders, at least three other PiAware boxes must receive a signal from a Mode S transponder. These signals, along with a timestamp of when they were received are then sent to the FlightAware servers where the location of a transponder can be determined.

The end result of this update is that FlightAware can now track twice as many aircraft around the world, all with a simple software update. It’s one of the most successful applications of crowdsourced software defined radio modules, and if you’d like to get in on the action, the FlightAware team put together a bulk order of ADS-B antennas.

PiAware, Automated Airliner Tracking On The Raspberry Pi

FlightAware

For the sufficiently geeky aviation nerd there’s FlightAware, a website that tracks just about every airliner and most private planes currently in flight. The folks at FlightAware compile all the information with the help of a few thousand volunteers around the world that have a bit of hardware to listen to ADS-B transmissions and relay them to the FlightAware servers. Now you can do this with a Raspberry Pi, and as a nice little bonus FlightAware is giving away free enterprise accounts to anyone who does.

Listening in on ADS-B transponders is something Raspberry Pis have been doing for a while, but doing anything useful with the altitude, speed, heading, and registry numbers of various planes flying overhead is pretty much FlightAware’s only reason for existing, and the reason they’ve developed an easy to use software package for the Pi.

Setting everything up requires getting dump1090 running on the Pi, the only hardware required being an RTL-SDR USB TV tuner, a GPS module, and an antenna for 1090 MHz. From there, just send all the data to FlightAware and you get a free enterprise account with them. Not a bad deal for the aviation nerds out there.